-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeogliph.py
405 lines (386 loc) · 14.5 KB
/
geogliph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import numpy as np
import os
import math
import matplotlib.pyplot as plt
import skimage.io
from skimage.color import rgb2gray
from skimage.filters import median, threshold_otsu
from skimage.morphology import skeletonize_3d
from skimage.measure import label
from scipy.signal import convolve2d
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
import networkx as nx
def LoadImage(path, filename):
image = skimage.io.imread(os.path.join(path,filename), 0)
return image
def PreprocessImage(img, image_name):
grey = rgb2gray(img)
th = threshold_otsu(grey)
return grey < th
def CreateSkeleton(img, image_name):
return skeletonize_3d(img)
#too slow
def RozenfeldSceletonize(img, image_name):
skel = img.astype(int)
kernel = np.zeros((3,3))
kernel[0,0] = 0b00000001
kernel[0,1] = 0b00000010
kernel[0,2] = 0b00000100
kernel[1,2] = 0b00001000
kernel[2,2] = 0b00010000
kernel[2,1] = 0b00100000
kernel[2,0] = 0b01000000
kernel[1,0] = 0b10000000
def function(mask):
mask = np.array([int(i) for i in bin(int(mask))[2:].zfill(9)])
tomap = {'04':[[1,2,3],[5,6,7]],'15':[[2,3,4],[0,6,7]],'26':[[0,1,7],[3,4,5]],\
'37':[[0,1,2],[4,5,6]],'13':[[0,4,5,6,7],[2]],'35':[[0,1,2,6,7],[4]],\
'17':[[2,3,4,5,6],[0]],'57':[[0,1,2,3,4],[6]]}
for diag in sorted(tomap.keys()):
if mask[int(diag[0])]+mask[int(diag[1])]==0 \
and np.sum(mask[tomap[diag][0]])!=0 and np.sum(mask[tomap[diag][1]])!=0:
return 0
return 1
def create_8simple(pic):
simp_mask = convolve2d(pic, kernel, mode='same')
simp = np.zeros(pic.shape)
#simp = map(lambda i: function(i), simp_mask)
squarer = lambda i: function(i)
vfunc = np.vectorize(squarer)
simp = vfunc(simp_mask)
simp = simp==1
print(np.array(simp).shape)
#plt.imshow(simp)
#plt.show()
return simp
def create_8isolated(pic):
isol = pic+np.roll(pic,1,axis=0)+np.roll(pic,-1,axis=0)+np.roll(pic,1,axis=1)+np.roll(pic,-1,axis=1)\
+np.roll(np.roll(pic,1,axis=0),1,axis=1)+np.roll(np.roll(pic,1,axis=0),-1,axis=1)\
+np.roll(np.roll(pic,-1,axis=0),1,axis=1)+np.roll(np.roll(pic,-1,axis=0),-1,axis=1)
isol = isol==1
return isol
def create_8endpoint(pic):
endp = pic-np.roll(pic,1,axis=0)-np.roll(pic,-1,axis=0)-np.roll(pic,1,axis=1)-np.roll(pic,-1,axis=1)\
-np.roll(np.roll(pic,1,axis=0),1,axis=1)-np.roll(np.roll(pic,1,axis=0),-1,axis=1)\
-np.roll(np.roll(pic,-1,axis=0),1,axis=1)-np.roll(np.roll(pic,-1,axis=0),-1,axis=1)
endp = ((endp==0)+(endp==1))*(pic!=0)
return endp
def check_east(pic):
north = pic-np.roll(pic,1,axis=1)
north = north==1
return north
def check_west(pic):
south = pic-np.roll(pic,-1,axis=1)
south = south==1
return south
def check_south(pic):
east = pic-np.roll(pic,-1,axis=0)
east = east==1
return east
def check_north(pic):
west = pic-np.roll(pic,1,axis=0)
west = west==1
return west
n_changed_pixels = 1
while n_changed_pixels > 0:
prev_skel = skel.copy()
skel1 = check_north(skel)*create_8simple(skel)*np.invert(create_8endpoint(skel))*np.invert(create_8isolated(skel))
skel2 = check_south(skel)*create_8simple(skel)*np.invert(create_8endpoint(skel))*np.invert(create_8isolated(skel))
skel3 = check_east(skel)*create_8simple(skel)*np.invert(create_8endpoint(skel))*np.invert(create_8isolated(skel))
skel4 = check_west(skel)*create_8simple(skel)*np.invert(create_8endpoint(skel))*np.invert(create_8isolated(skel))
skel = skel1+skel2+skel3+skel4
n_changed_pixels = np.sum(prev_skel-skel)
fig, ((ax1,ax2,ax3),(ax4,ax5, ax6)) = plt.subplots(2,3)
ax1.imshow(prev_skel)
ax2.imshow(skel1)
ax3.imshow(skel2)
ax4.imshow(skel3)
ax5.imshow(skel4)
ax6.imshow(skel)
plt.title(str(n_changed_pixels)+'changed')
plt.show()
return skel
def CreateGraph(skel_orig, image_name):
skel = skel_orig // 255
new_skel = skel.astype(int)
coordinates = []
G=nx.Graph()
vertice = 0
for x in range(skel.shape[0]):
for y in range(skel.shape[1]):
if not skel[x,y]:
continue
new_skel[x,y] = skel[x-1,y-1]+skel[x,y-1]+skel[x+1,y-1]+\
skel[x-1,y]+skel[x+1,y]+\
skel[x-1,y+1]+skel[x,y+1]+skel[x+1,y+1]
if new_skel[x,y] != 2:
G.add_node(vertice, pos=(x,y))
coordinates.append([x,y])
vertice += 1
di = {'0':[-1,-1],'1':[0,-1],'2':[1,-1],'3':[1,0],'4':[1,1],'5':[0,1],'6':[-1,1],'7':[-1,0]}
def search_node(coordinates, img, pos):
edge_length = 0
new_nodes = []
nodes_length = []
for mama_dir in sorted(di.keys()):
#print(pos[0], pos[1])
if not img[pos[0]+di[mama_dir][0],pos[1]+di[mama_dir][1]]:
continue
else:
prev_x = pos[0]
prev_y = pos[1]
cur_x = prev_x + di[mama_dir][0]
cur_y = prev_y + di[mama_dir][1]
if [cur_x,cur_y] in coordinates:
new_nodes += [coordinates.index([cur_x,cur_y])]
nodes_length += [edge_length]
#print("LENGTH 0")
continue
while True:
#print('>>>WHILE<<<')
#print(coordinates)
found = False
for n_dir in sorted(di.keys()):
#print('~'+n_dir+'~')
#print(prev_x, prev_y, cur_x, cur_y, cur_x+di[n_dir][0], cur_y+di[n_dir][1])
if not img[cur_x+di[n_dir][0],cur_y+di[n_dir][1]]:
#print('->white')
continue
if cur_x+di[n_dir][0]==prev_x and cur_y+di[n_dir][1]==prev_y:
#print('->prev')
continue
prev_x = cur_x
prev_y = cur_y
cur_x += di[n_dir][0]
cur_y += di[n_dir][1]
edge_length += 1
if [cur_x,cur_y] in coordinates:
new_nodes += [coordinates.index([cur_x,cur_y])]
nodes_length += [edge_length]
edge_length = 0
found = True
break
if found:
break
#print('OOOOHHHHH STH WRONG')
return new_nodes, nodes_length
G_copy = G.copy()
for node_num, coords in G_copy.nodes(data=True):
new_nodes, edges_length = search_node(coordinates, skel, coords['pos'])
for n in range(len(new_nodes)):
G.add_edge(node_num, new_nodes[n], len=edges_length[n])
def check_dist(coords, popp, x, y, idx):
for c_id, c in enumerate(coords[idx:]):
if idx+c_id in popp:
continue
if math.hypot(c[0] - x, c[1] - y) != 0 and math.hypot(c[0] - x, c[1] - y) < 3:
return idx+c_id
return -1
def remove_close_nodes(G, popped, vertice, coordinates):
while True:
merged = False
for vert1, attr in G.nodes(data=True):
vert2 = check_dist(coordinates, popped, attr['pos'][0], attr['pos'][1], vert1+1)
if vert2 != -1:
vertice += 1
merge_nodes(G, [vert1, vert2], vertice, {'pos':(coordinates[vert1][0], coordinates[vert1][1])})
coordinates += [coordinates[vert1]]
popped += [vert1, vert2]
merged = True
if merged:
break
if not merged:
break
return popped, vertice, coordinates
#not used
def remove_extra_terminal_nodes(G, popped, vertice):
G_copy = G.copy()
for (edge1, edge2, attr) in G_copy.edges_iter(data=True):
if (edge1==edge2 and attr['len'] < 5) or (attr['len'] < 5 and (G.degree(edge1)==1 or G.degree(edge2)==1)):
if edge1==edge2:
G.remove_edge(edge1, edge2)
if G.degree(edge1) == 1:
G.remove_node(edge1)
popped += [edge1]
elif G.degree(edge2) == 1:
G.remove_node(edge2)
popped += [edge2]
return popped, vertice
def remove_extra_nodes(G, popped, vertice, coordinates):
while True:
merged = False
for node, attr in G.nodes(data=True):
if G.degree(node) == 2:
n1 = G.neighbors(node)[0]
n2 = G.neighbors(node)[1]
G.add_edge(n1, n2, len=G.get_edge_data(node,n1)['len']+G.get_edge_data(node,n2)['len'])
G.remove_node(node)
popped += [node]
merged = True
elif G.degree(node) == 3:
n1 = G.neighbors(node)[0]
n2 = G.neighbors(node)[1]
n3 = G.neighbors(node)[2]
lengths = [G.get_edge_data(node,n1)['len'], G.get_edge_data(node,n2)['len'], G.get_edge_data(node,n3)['len']]
length_m = [(l<=7) for l in lengths]
lengths_l = [l>50 for l in lengths]
if sum(length_m)==1 and sum(lengths_l)>0 and G.degree([n for a,n in zip(length_m,[n1,n2,n3]) if a][0]) == 1:
nodes = [n for a,n in zip(length_m,[n1,n2,n3]) if not a]
G.add_edge(nodes[0], nodes[1], len=G.get_edge_data(node,nodes[0])['len']+G.get_edge_data(node,nodes[1])['len'])
G.remove_node(node)
#pos = dict(zip(range(len(coordinates)), coordinates))
#plt.imshow(new_skel.T)
#nx.draw_networkx(G, pos, node_size=5)
#plt.show()
popped += [node]
merged = True
if merged:
break
if not merged:
break
return popped, vertice
def remove_self_loops(G):
G_copy = G.copy()
for (edge1, edge2, attr) in G_copy.edges_iter(data=True):
if edge1==edge2:
G.remove_edge(edge1, edge2)
def remove_isolated_nodes(G, popped):
G_copy = G.copy()
for node, attr in G_copy.nodes(data=True):
if G.degree(node) == 0:
G.remove_node(node)
popped += [node]
return popped
pos = dict(zip(range(len(coordinates)), coordinates))
#fig, ax = plt.subplots(figsize=(20,10))
#ax.imshow(new_skel.T)
#nx.draw_networkx(G, pos, node_size=5)
#plt.show()
#fig.savefig('Result/'+image_name[:-4]+'_skel_1.png')
popped = []
vertice -= 1
popped, vertice, coordinates = remove_close_nodes(G, popped, vertice, coordinates)
remove_self_loops(G)
popped, vertice = remove_extra_nodes(G, popped, vertice, coordinates)
popped = remove_isolated_nodes(G, popped)
pos = dict(zip(range(len(coordinates)), coordinates))
#fig, ax = plt.subplots(figsize=(20,10))
#ax.imshow(new_skel.T)
#nx.draw_networkx(G, pos, node_size=5)
#plt.title(image_name)
#plt.show()
#fig.savefig('Result/'+image_name[:-4]+'_skel_2.png')
#to_save = np.dstack((skel_orig,skel_orig,skel_orig))
#for node, attr in G.nodes(data=True):
# to_save[attr['pos'][0],attr['pos'][1]] = (0,0,255)
#skimage.io.imsave('Result/'+image_name+'.png',to_save)
return G, new_skel
def merge_nodes(G, nodes, new_node, attr_dict=None, **attr):
G.add_node(new_node, attr_dict, **attr)
for n1,n2,data in G.edges(data=True):
if n1 in nodes:
G.add_edge(new_node,n2,data)
elif n2 in nodes:
G.add_edge(n1,new_node,data)
for n in nodes:
G.remove_node(n)
def FindFeatures(G, skel, long_th):
number_components = nx.number_connected_components(G)
number_nodes = G.number_of_nodes()
number_edges = G.number_of_edges()
edge_lens = []
degrees = []
terminal_nodes = []
for (edge1, edge2, attr) in G.edges_iter(data=True):
edge_lens += [attr['len']]
for node, attr in G.nodes(data=True):
degrees += [G.degree(node)]
if G.degree(node) == 1:
if terminal_nodes == []:
terminal_nodes += [node]
continue
dist = [math.hypot(attr['pos'][0] - nx.get_node_attributes(G,'pos')[node2][0], attr['pos'][1] - nx.get_node_attributes(G,'pos')[node2][1]) > 5 for node2 in terminal_nodes if node != node2]
if all(dist):
terminal_nodes += [node]
#else:
# print(dist)
# print(terminal_nodes)
# input()
#last_nodes = len([x for x in G.nodes_iter() if G.degree(x)==1])
max_degree = max(degrees)
count_max_degrees = np.sum(np.asarray(degrees) > 3)
count_long_edges = np.sum(np.asarray(edge_lens) > long_th)
#max_len = max(edge_lens)
#avg_edge_len = np.mean(edge_lens)
to_save = np.dstack((skel,skel,skel))
for node, attr in G.nodes(data=True):
if node in terminal_nodes:
to_save[attr['pos'][0],attr['pos'][1]] = (0,255,0)
else:
to_save[attr['pos'][0],attr['pos'][1]] = (0,0,255)
skimage.io.imsave('Result/'+image_name+'.png',to_save)
return [number_components*10, len(terminal_nodes), max_degree, count_long_edges]
def create_gt(names):
y = []
for name in names:
y += [int(name[7])]
return y
def classify(x, y, names, lst):
clf = KNeighborsClassifier(n_neighbors=1)
#clf.fit(x[::4],y[::4])
clf.fit([x[i] for i in lst], [y[i] for i in lst])
print('>>',np.sum(np.asarray(y) == clf.predict(x))/len(y))
#print('+>',np.asarray(y) == clf.predict(x))
#[print(names[i], y[i], clf.predict(x[i:i+1]), x[i]) for i in range(len(names))]
return np.sum(np.asarray(y) == clf.predict(x))/len(y)
if __name__ == '__main__':
path = 'Geogliph_1'
out_path = 'Result'
list_train_images = [0,4,8,12,16,20,24]
if not os.path.exists(out_path):
os.makedirs(out_path)
images = os.listdir(path)
all_features = []
images_names = []
for image_name in images:
if image_name.startswith("."):
continue
#if image_name != 'Силуэт_3_4.bmp':
# continue
img = LoadImage(path, image_name)
binarized = PreprocessImage(img, image_name)
skeleton = CreateSkeleton(binarized, image_name)
#skeleton = RozenfeldSceletonize(binarized, image_name)
nwgraph, skel = CreateGraph(skeleton, image_name)
all_features += [FindFeatures(nwgraph, skeleton, 30)]
#fig, (ax1, ax2) = plt.subplots(1,2)
#ax1.imshow(skeleton, interpolation = 'none', cmap = 'gray')
#ax2.imshow(skel, interpolation = 'none')
#plt.show()
#fig.savefig(os.path.join(out_path,image_name[:-3]+'png'))
images_names += [image_name]
y = create_gt(images_names)
classify(all_features,y, images_names, list_train_images)
#scores = [[0.6428571428571429, 0.6428571428571429, 0.6785714285714286, \
#0.6428571428571429, 0.6428571428571429, 0.6428571428571429, 0.6428571428571429, \
#0.6071428571428571, 0.6428571428571429, 0.6071428571428571, 0.6428571428571429, \
#0.6785714285714286, 0.6071428571428571, 0.6428571428571429, 0.5714285714285714, \
#0.5714285714285714, 0.6785714285714286, 0.7142857142857143, 0.6785714285714286, \
#0.6071428571428571, 0.6428571428571429, 0.6785714285714286, 0.7142857142857143, \
#0.7142857142857143, 0.8928571428571429, 0.8928571428571429, 0.8214285714285714, \
#0.9285714285714286, 0.9285714285714286, 0.8928571428571429, 0.9285714285714286, \
#0.9285714285714286, 0.9285714285714286, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75,\
# 0.75, 0.75, 0.75, 0.75, 0.75, 0.7857142857142857, 0.8214285714285714, \
#0.7142857142857143, 0.7142857142857143, 0.7142857142857143, 0.6785714285714286, \
#0.7142857142857143, 0.7142857142857143, 0.6785714285714286, 0.6428571428571429, \
#0.6428571428571429, 0.6428571428571429, 0.6071428571428571, 0.5714285714285714, \
#0.6428571428571429, 0.6428571428571429, 0.6428571428571429, 0.6428571428571429, \
#0.6785714285714286, 0.6785714285714286, 0.6785714285714286, 0.6785714285714286, \
#0.6785714285714286, 0.6785714285714286, 0.6785714285714286, 0.6785714285714286, \
#0.6785714285714286, 0.7142857142857143, 0.75, 0.75, 0.7857142857142857, \
#0.7142857142857143, 0.7142857142857143, 0.7142857142857143, 0.7142857142857143, \
#0.7142857142857143, 0.7142857142857143, 0.6785714285714286, 0.6785714285714286, \
#0.7142857142857143, 0.75, 0.75, 0.75, 0.7857142857142857, 0.7857142857142857, \
#0.75, 0.7857142857142857, 0.7857142857142857, 0.7142857142857143, 0.6428571428571429, \
#0.6428571428571429, 0.6785714285714286, 0.6785714285714286, 0.6071428571428571, 0.6428571428571429]]