-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnon_gt_rnn_3.py
101 lines (80 loc) · 3.1 KB
/
non_gt_rnn_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
from resources.importData import importAndProcess
from nltk.tokenize import word_tokenize
from keras.preprocessing.text import Tokenizer
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
def preprocess(messages):
# get single words out of sentences
tokMessages = []
maxlength = 0
longest = []
for msg in messages:
tok = word_tokenize(msg)
tokMessages.append(tok)
if len(tok) > maxlength:
maxlength = len(tok)
longest = tok
newMsg = []
for msg in tokMessages:
n = " ".join(msg)
newMsg.append(n)
return newMsg
def createKerasTokens(messages_train,messages_dev,messages_test):
newMsg = preprocess(messages_train)
toker = Tokenizer(filters='')
toker.fit_on_texts(newMsg)
X_train = toker.texts_to_sequences(newMsg)
print(len(toker.word_counts))
X_train = np.asarray(X_train)
newMsg = preprocess(messages_dev)
X_dev = toker.texts_to_sequences(newMsg)
X_dev = np.asarray(X_dev)
newMsg = preprocess(messages_test)
X_test = toker.texts_to_sequences(newMsg)
X_test = np.asarray(X_test)
wordCount = len(toker.word_counts) + 1
return X_train,X_dev,X_test,wordCount
if __name__ == '__main__':
messages_train, loc_train, messages_dev, loc_dev, messages_test, loc_test = importAndProcess()
X_train,X_dev,X_test,wordCount = createKerasTokens(messages_train,messages_dev,messages_test)
y_train = loc_train
y_train[loc_train == 'sg'] = 0
y_train[loc_train == 'us'] = 1
y_train[loc_train == 'uk'] = 2
y_dev = loc_dev
y_dev[loc_dev == 'sg'] = 0
y_dev[loc_dev == 'us'] = 1
y_dev[loc_dev == 'uk'] = 2
y_test = loc_test
y_test[loc_test == 'sg'] = 0
y_test[loc_test == 'us'] = 1
y_test[loc_test == 'uk'] = 2
# fix random seed for reproducibility
np.random.seed(43)
num_classes = []
# truncate and pad input sequences
max_length = 200
X_train = sequence.pad_sequences(X_train, maxlen=max_length)
X_dev = sequence.pad_sequences(X_dev, maxlen=max_length)
X_test = sequence.pad_sequences(X_test, maxlen=max_length)
y_train = np_utils.to_categorical(y_train, num_classes)
y_dev = np_utils.to_categorical(y_dev, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# create the model
embedding_vector_length = 3
model = Sequential()
model.add(Embedding(wordCount, embedding_vector_length, input_length=max_length))
model.add(LSTM(100,dropout=0.65))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print (model.summary())
model.fit(X_train, y_train, epochs=10, batch_size=64,verbose=1, validation_data=(X_dev,y_dev), shuffle =True)
# Final evaluation of the model
scores = model.evaluate(X_dev, y_dev, verbose=1)
print ("Accuracy: %.2f%%" % (scores[1]*100))
model.save('models/non_gt_rnn_3_model.h5')