-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtable_of_videos_split.py
51 lines (42 loc) · 1.7 KB
/
table_of_videos_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
import os
import tqdm
import json
import csv
from collections import defaultdict
for influencer in tqdm.tqdm(os.listdir("./profiles")):
with open(os.path.join("profiles", influencer), encoding="utf-8") as fp:
raw_data = json.load(fp)
data: defaultdict[str, list] = defaultdict(list)
for video in raw_data:
if video["authorMeta"]["region"] == "US":
data["id"].append(video["id"])
data["author"].append(video["authorMeta"]["name"])
data["nation"].append(video["authorMeta"]["region"])
data["date"].append(video["createTime"])
data["views"].append(video["playCount"])
data["likes"].append(video["diggCount"])
data["comments"].append(video["commentCount"])
data["shares"].append(video["shareCount"])
data["url"].append(video["webVideoUrl"])
data["text"].append(video["text"])
if os.path.isfile(os.path.join("clean_transcripts", video["id"] + ".txt")):
with open(
os.path.join("clean_transcripts", video["id"] + ".txt"),
encoding="utf-8",
) as fp:
data["transcript"].append(fp.read())
else:
data["transcript"].append(pd.NA)
data["hashtags"].append(
list(set(tag["name"] for tag in video["hashtags"] if tag["name"] != ""))
)
df = pd.DataFrame(data)
if df.shape[0] > 0:
df.to_csv(
os.path.join(
"video_data", f"{influencer.removesuffix('.json')}_videos.csv"
),
index=False,
quoting=csv.QUOTE_NONNUMERIC,
)