-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
58 lines (49 loc) · 1.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 7 13:05:16 2017
Updated on Nov 14 2017
@author: Zain
"""
import os
import pandas as pd
import gc
import src.trainer as trainer
if __name__ == '__main__':
'''
1s 32 frames
3s 94 frames
5s 157 frames
6s 188 frames
10s 313 frames
20s 628 frames
29.12s 911 frames
'''
slice_lengths = [911, 628, 313, 157, 94, 32]
random_state_list = [0, 21, 42]
iterations = 3
summary_metrics_output_folder = 'trials_song_split'
for slice_len in slice_lengths:
scores = []
pooling_scores = []
for i in range(iterations):
score, pooling_score = trainer.train_model(
nb_classes=20,
slice_length=slice_len,
lr=0.001,
train=True,
load_checkpoint=True,
plots=False,
album_split=False,
random_states=random_state_list[i],
save_metrics=True,
save_metrics_folder='metrics_song_split',
save_weights_folder='weights_song_split')
scores.append(score['weighted avg'])
pooling_scores.append(pooling_score['weighted avg'])
gc.collect()
os.makedirs(summary_metrics_output_folder, exist_ok=True)
pd.DataFrame(scores).to_csv(
'{}/{}_score.csv'.format(summary_metrics_output_folder, slice_len))
pd.DataFrame(pooling_scores).to_csv(
'{}/{}_pooled_score.csv'.format(
summary_metrics_output_folder, slice_len))