-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
96 lines (77 loc) · 3.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import datetime
import os
import torch
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SequentialSampler, BatchSampler
from model.config import cfg
from model.modeling.build_model import Model, InvModel
from model.data.transforms.data_preprocess import TestTransforms
from model.data.crack_dataset import CrackDataSetTest
from model.engine.inference import inference_for_ss
from model.utils.misc import fix_model_state_dict, send_line_notify
from model.data.transforms.transforms import FactorResize
from torch.multiprocessing import Pool, Process, set_start_method
def test(args, cfg):
device = torch.device(cfg.DEVICE)
# model = Model(cfg).to(device)
if cfg.MODEL.SR_SEG_INV:
model = InvModel(cfg).to(device)
print(f'------------Model Architecture-------------\n\n<Network SS>\n{model.segmentation_model}\n\n<Network SR>\n{model.sr_model}')
else:
model = Model(cfg).to(device)
print(f'------------Model Architecture-------------\n\n<Network SR>\n{model.sr_model}\n\n<Network SS>\n{model.segmentation_model}')
model.load_state_dict(fix_model_state_dict(torch.load(args.trained_model, map_location=lambda storage, loc:storage)))
model.eval()
print('Loading Datasets...')
test_transforms = TestTransforms(cfg)
sr_transforms = FactorResize(cfg.MODEL.SCALE_FACTOR)
test_dataset = CrackDataSetTest(cfg, cfg.DATASET.TEST_IMAGE_DIR, cfg.DATASET.TEST_MASK_DIR, transforms=test_transforms, sr_transforms=sr_transforms)
sampler = SequentialSampler(test_dataset)
batch_sampler = BatchSampler(sampler=sampler, batch_size=args.batch_size, drop_last=False)
test_loader = DataLoader(test_dataset, num_workers=args.num_workers, batch_sampler=batch_sampler)
if args.num_gpus > 1:
# for k in models.keys():
# device_ids = list(range(args.num_gpus))
# print("device_ids:",device_ids)
# # models[k] = torch.nn.DataParallel(models[k], device_ids=device_ids)
device_ids = list(range(args.num_gpus))
print("device_ids:",device_ids)
model = torch.nn.DataParallel(model, device_ids=device_ids)
with torch.no_grad():
inference_for_ss(args, cfg, model, test_loader)
def main():
parser = argparse.ArgumentParser(description='Crack Segmentation with Super Resolution(CSSR)')
parser.add_argument('test_dir', type=str, default=None)
parser.add_argument('iteration', type=int, default=None)
parser.add_argument('--output_dirname', type=str, default=None)
parser.add_argument('--config_file', type=str, default=None, metavar='FILE')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_gpus', type=int, default=6)
parser.add_argument('--test_aiu', type=bool, default=True)
parser.add_argument('--trained_model', type=str, default=None)
parser.add_argument('--wandb_flag', type=bool, default=True)
parser.add_argument('--wandb_prj_name', type=str, default="CSSR_test")
args = parser.parse_args()
check_args = [('config_file', f'{args.test_dir}config.yaml'),
('output_dirname', f'{args.test_dir}eval_AIU/iter_{args.iteration}'),
('trained_model', f'{args.test_dir}model/iteration_{args.iteration}.pth'),
]
for check_arg in check_args:
arg_name = f'args.{check_arg[0]}'
if exec(arg_name) == None:
exec(f'{arg_name} = "{check_arg[1]}"')
cuda = torch.cuda.is_available()
if cuda:
torch.backends.cudnn.benchmark = True
if len(args.config_file) > 0:
print('Configration file is loaded from {}'.format(args.config_file))
cfg.merge_from_file(args.config_file)
cfg.OUTPUT_DIR = args.output_dirname
cfg.freeze()
print('Running with config:\n{}'.format(cfg))
test(args, cfg)
if __name__ == '__main__':
set_start_method('spawn')
main()