-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_cls.py
167 lines (140 loc) · 6.21 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as np
import os
from torchvision import transforms
from models import DensePointCls_L6 as DensePoint
from data import ModelNet40Cls
import utils.pytorch_utils as pt_utils
import utils.pointnet2_utils as pointnet2_utils
import data.data_utils as d_utils
import argparse
import random
import yaml
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
seed = 123
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
parser = argparse.ArgumentParser(description='DensePoint Shape Classification Training')
parser.add_argument('--config', default='cfgs/config_cls.yaml', type=str)
def main():
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f)
print("\n**************************")
for k, v in config['common'].items():
setattr(args, k, v)
print('\n[%s]:'%(k), v)
print("\n**************************\n")
try:
os.makedirs(args.save_path)
except OSError:
pass
train_transforms = transforms.Compose([
d_utils.PointcloudToTensor()
])
test_transforms = transforms.Compose([
d_utils.PointcloudToTensor()
])
train_dataset = ModelNet40Cls(num_points = args.num_points, root = args.data_root, transforms=train_transforms)
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=int(args.workers),
pin_memory=True
)
test_dataset = ModelNet40Cls(num_points = args.num_points, root = args.data_root, transforms=test_transforms, train=False)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
pin_memory=True
)
model = DensePoint(num_classes = args.num_classes, input_channels = args.input_channels, use_xyz = True)
model.cuda()
optimizer = optim.Adam(
model.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)
lr_lbmd = lambda e: max(args.lr_decay**(e // args.decay_step), args.lr_clip / args.base_lr)
bnm_lmbd = lambda e: max(args.bn_momentum * args.bn_decay**(e // args.decay_step), args.bnm_clip)
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd)
bnm_scheduler = pt_utils.BNMomentumScheduler(model, bnm_lmbd)
if args.checkpoint is not '':
model.load_state_dict(torch.load(args.checkpoint))
print('Load model successfully: %s' % (args.checkpoint))
criterion = nn.CrossEntropyLoss()
num_batch = len(train_dataset)/args.batch_size
# training
train(train_dataloader, test_dataloader, model, criterion, optimizer, lr_scheduler, bnm_scheduler, args, num_batch)
def train(train_dataloader, test_dataloader, model, criterion, optimizer, lr_scheduler, bnm_scheduler, args, num_batch):
PointcloudScaleAndTranslate = d_utils.PointcloudScaleAndTranslate() # initialize augmentation
global g_acc
g_acc = 0.91 # only save the model whose acc > 0.91
batch_count = 0
model.train()
for epoch in range(args.epochs):
for i, data in enumerate(train_dataloader, 0):
if lr_scheduler is not None:
lr_scheduler.step(epoch)
if bnm_scheduler is not None:
bnm_scheduler.step(epoch-1)
points, target = data
points, target = points.cuda(), target.cuda()
points, target = Variable(points), Variable(target)
# farthest point sampling
fps_idx = pointnet2_utils.furthest_point_sample(points, 1200) # (B, npoint)
fps_idx = fps_idx[:, np.random.choice(1200, args.num_points, False)]
points = pointnet2_utils.gather_operation(points.transpose(1, 2).contiguous(), fps_idx).transpose(1, 2).contiguous() # (B, N, 3)
# augmentation
points.data = PointcloudScaleAndTranslate(points.data)
optimizer.zero_grad()
pred = model(points)
target = target.view(-1)
loss = criterion(pred, target)
loss.backward()
optimizer.step()
if i % args.print_freq_iter == 0:
print('[epoch %3d: %3d/%3d] \t train loss: %0.6f \t lr: %0.5f' %(epoch+1, i, num_batch, loss.data.clone(), lr_scheduler.get_lr()[0]))
batch_count += 1
# validation in between an epoch
if args.evaluate and batch_count % int(args.val_freq_epoch * num_batch) == 0:
validate(test_dataloader, model, criterion, args, batch_count)
def validate(test_dataloader, model, criterion, args, iter):
global g_acc
model.eval()
losses, preds, labels = [], [], []
for j, data in enumerate(test_dataloader, 0):
points, target = data
points, target = points.cuda(), target.cuda()
points, target = Variable(points, volatile=True), Variable(target, volatile=True)
# farthest point sampling
fps_idx = pointnet2_utils.furthest_point_sample(points, args.num_points) # (B, npoint)
# fps_idx = fps_idx[:, np.random.choice(1200, args.num_points, False)]
points = pointnet2_utils.gather_operation(points.transpose(1, 2).contiguous(), fps_idx).transpose(1, 2).contiguous()
pred = model(points)
target = target.view(-1)
loss = criterion(pred, target)
losses.append(loss.data.clone())
_, pred_choice = torch.max(pred.data, -1)
preds.append(pred_choice)
labels.append(target.data)
preds = torch.cat(preds, 0)
labels = torch.cat(labels, 0)
acc = (preds == labels).sum() / labels.numel()
print('\nval loss: %0.6f \t acc: %0.6f\n' %(np.array(losses).mean(), acc))
if acc > g_acc:
g_acc = acc
torch.save(model.state_dict(), '%s/cls_iter_%d_acc_%0.6f.pth' % (args.save_path, iter, acc))
model.train()
if __name__ == "__main__":
main()