-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataAnalysis.py
49 lines (43 loc) · 1.66 KB
/
dataAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import csv
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
import os.path as path
def main():
fpath = path.join('Data', 'Bikedata.csv')
with open(fpath, newline=None) as csvfile:
breader = csv.reader(csvfile,delimiter=',')
with plt.xkcd():
x = []
y = []
for row in breader:
ysub = []
for i in range(1,len(row)):
# print(row[i])
if (row[i] != '') & (row[i] != '\n'):
ysub.append(float(row[i]))
x.append(float(row[0]))
y.append(ysub)
fig = plt.figure()
font = {'size': 30}
rc('font',**font)
ax = []
for xe, ye in zip(x,y):
avg = (np.mean(ye))
ax.append(avg)
stdev = np.std(ye)
yl = [avg-stdev,avg+stdev]
plt.scatter([xe]*len(ye),ye,s=100,c=[1,.5,0],cmap='plasma',linewidths=None,edgecolors='b')
plt.plot([xe]*2, yl, label='Std Dev', alpha=.6, linewidth=7)
aplt = plt.scatter(x, ax, s=200, marker="H", alpha=.4, norm=0, edgecolors='b',label='plot1')
# plt.legend([aplt],['Average'])
plt.title('IS THE CADENCE STUFF GOOD??')
plt.annotate("MORE EFFICIENT ALTERNATIVE POSSIBLE. \nWILL INVOLVE MONKEYS. \n"
"AND BANANAS.",
xy = (40,100))
plt.legend([aplt],['Average'])
plt.xlabel('Observed Cadence')
plt.ylabel('Calculated Cadence')
plt.show()
plt.hold(False)
main()