-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
57 lines (57 loc) · 1.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from openai import OpenAI
from opensearchpy import OpenSearch
from dotenv import load_dotenv
load_dotenv()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
UPSTAGE_API_KEY = os.getenv("UPSTAGE_API_KEY")
OPENSEARCH_HOST = os.getenv("OPENSEARCH_HOST")
OPENSEARCH_USER = os.getenv("OPENSEARCH_USER")
OPENSEARCH_PASSWORD = os.getenv("OPENSEARCH_PASSWORD")
client = OpenAI(
api_key=UPSTAGE_API_KEY,
base_url="https://api.upstage.ai/v1/solar"
)
opensearch_client = OpenSearch(
hosts=[{"host": OPENSEARCH_HOST, "port": 9200}],
http_auth=(OPENSEARCH_USER, OPENSEARCH_PASSWORD),
use_ssl=True,
verify_certs=False
)
class CommunityContent(BaseModel):
content: str
board: int
community: int
@app.post("/embedded/community/contents")
async def embedCommunity(content_data: CommunityContent):
try:
embedding_response = client.embeddings.create(
model="solar-embedding-1-large-passage",
input=content_data.content
)
embeddings = embedding_response.data[0].embedding
document = {
"title_emb": embeddings,
"board_no": content_data.board,
"community_no": content_data.community
}
response = opensearch_client.index(
index="data_community",
body=document
)
if response["result"] == "created":
return {"status": 200, "why": ""}
else:
return {"status": 500, "why": "OpenSearch 저장 실패"}
except Exception as e:
return {"status": 500, "why": str(e)}