-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinfer.py
122 lines (101 loc) · 4.66 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
# ==================================
# AUTHOR : Yan Li, Qiong Wang
# CREATE DATE : 02.10.2020
# Contact : liyanxian19@gmail.com
# ==================================
# Change History: None
# ==================================
"""
########## Import python libs ##########
from __future__ import print_function
from collections import OrderedDict
import argparse
import os
import time
########## Import third-party libs ##########
import matplotlib.pyplot as plt
import numpy as np
########## Import our libs ##########
from dataset import get_preds_data
from model import manet
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--data_root', type=str, default='./Data') # YOUR_DATA_ROOT
parser.add_argument('--dataset', type=str, default='CVIA_HCI_val') # YOUR_DATA_SET.txt in YOUR_DATA_ROOT
parser.add_argument('--model_path', type=str, default='./Model') # YOUR_MODEL_PATH
parser.add_argument('--move_path', type=str, default='LT') # LT: Left-right, Top-bottom
parser.add_argument('--model_infovis', type=bool, default=True)
config = parser.parse_args()
def infer(model_weights_medium, data_for_predictions, model_pred=None, logger=None, show_time=False):
def get_weights(model_weights_medium):
# load model weights
if isinstance(model_weights_medium, str):
model_pred.load_weights(model_weights_medium)
for data_key, data_value in data_for_predictions.items():
imgs = data_value[0]
get_weights(model_weights_medium)
start = time.time()
########## predict ##########
outputs = model_pred.predict(imgs, batch_size=config.batch_size)[-1]
end = time.time()
if show_time:
logger.info("=> elapsed time: {}s".format(end-start))
logger.info("=> output_tmp: {}".format(outputs.shape))
return outputs
def run():
########## call logger ##########
logger = get_logger()
########## choose CPU or GPU ##########
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # "-1": cpu, "0": 'gtx1080 ti' (in our case)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # disable printing tensorflow gpu info etc.
########## prepare dataset ##########
lf_shape = (512, 512, 9, 9, 3) # CVIA_HCI
#lf_shape = (434, 625, 9, 9, 3) # EPFL
config.lf_shape = lf_shape
input_chns = 7 # input channels to MANet
input_img_shape = [lf_shape[0], lf_shape[1]] # input image shape to MANet
# padding
if input_img_shape[0] % 8 == 0 and input_img_shape[0] % 8 == 0:
config.pad = None
input_shape = (input_img_shape[0], input_img_shape[1], input_chns)
else:
pad_n_hl, pad_n_hr, pad_n_wl, pad_n_wr = 0, 0, 0, 0
if input_img_shape[0] % 8 != 0:
pad_n_hl = int(8 - img_shape[0] % 8)/2
pad_n_hr = (8 - img_shape[0] % 8) - pad_n_hl
if input_img_shape[1] % 8 != 0:
pad_n_wl = int(8 - img_shape[1] % 8)/2
pad_n_wr = (8 - img_shape[1] % 8) - pad_n_wl
config.pad = [pad_n_hl, pad_n_hr, pad_n_wl, pad_n_wr]
input_shape = (input_img_shape[0]+(pad_n_hl+pad_n_hr), input_img_shape[1]+(pad_n_wl+pad_n_wr), input_chns)
config.input_shape = input_shape
preds_x = get_preds_data(config, logger=logger)
data_for_predictions = OrderedDict()
data_for_predictions = {config.dataset: [preds_x]}
########## prepare model ##########
input_layer_names = ["x90d", "x0d", "x45d", "xm45d"]
manet_model = manet(input_layer_names, input_shape, config=config, logger=logger)
########## start to infer ##########
for model_id, model_weights_file in enumerate(os.listdir(config.model_path)):
if '.hdf5' in model_weights_file:
logger.info("load model weights {}".format(model_weights_file))
if model_id == 0:
# dry run
x = np.zeros((1, 512, 512, 7), dtype=np.float32)
infer(os.path.join(config.model_path, model_weights_file),
{"dry_run": [[x, x, x, x]]},
model_pred=manet_model,
logger=logger)
# infer
outputs = infer(os.path.join(config.model_path, model_weights_file),
data_for_predictions,
model_pred=manet_model,
logger=logger,
show_time=True)
logger.info(outputs.shape)
plt.imsave('./Results/example.png', outputs[0, ..., 0])
if __name__ == '__main__':
run()