-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_seg.py
105 lines (82 loc) · 3.76 KB
/
train_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import warnings
warnings.filterwarnings('ignore')
import argparse
from model import create_model
import torch.backends.cudnn as cudnn
import pytorch_lightning as pl
from trainer import create_trainer
from pytorch_lightning.plugins import DDPPlugin
from data import create_dataloader
from data.DESC_dataset import DatasetProvider
from utils import MessageLogger, init_loggers, update_opt
from copy import deepcopy
from pytorch_lightning.profiler import SimpleProfiler
import os
from model.encoderdecoder_model import EncoderDecoder
cudnn.benchmark = True
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class DESCdata_prep(pl.LightningDataModule):
def __init__(self, opt):
super().__init__()
self.opt = deepcopy(opt)
def setup(self, stage: str):
opt = self.opt
dataset_opt = deepcopy(opt["datasets"])
train_opt = deepcopy(dataset_opt)
train_opt['phase'] = "train"
self.train_opt = train_opt
eval_opt = deepcopy(dataset_opt)
eval_opt['phase'] = "eval"
self.eval_opt = eval_opt
self.train_dataset = DatasetProvider(**dataset_opt,mode='train').get_dataset()
self.val_dataset = DatasetProvider(**dataset_opt,mode='val').get_dataset()
def train_dataloader(self):
if hasattr(self, "train_loader"):
return self.train_loader
opt = self.opt
train_loader = create_dataloader(self.train_dataset,self.train_opt,opt['logger']['name'])
self.train_loader = train_loader
return train_loader
def val_dataloader(self):
if hasattr(self, "eval_loader"):
return self.eval_loader
opt = self.opt
eval_loader = create_dataloader(self.val_dataset,self.eval_opt,opt['logger']['name'],ddp_sampler=False)
self.eval_loader = eval_loader
return eval_loader
def main(args):
args, opt = update_opt(args.opt,args)
if "torch_home" in opt:
os.environ['TORCH_HOME'] = opt["torch_home"]
init_loggers(opt)
msg_logger = MessageLogger(opt)
backbone = create_model(opt["network"],opt['logger']['name'])
model = EncoderDecoder(
backbone,
opt["head_main"],
opt["head_aux"]
)
model = create_trainer(opt['train']['type'], opt['logger']['name'], {"model": model, "log" : msg_logger, "opt" : opt["train"], "checkpoint": args.checkpoint})
if opt.get("apex",False):
kwargs = {"amp_backend":"apex", "amp_level":"O1"}
else:
kwargs = {}
sync_batchnorm = opt['train'].get('sync_batchnorm', True)
check_val_every_n_epoch = opt['train'].get('check_val_every_n_epoch',1)
plt = pl.Trainer(max_epochs = opt["train"].get("early_stop_epoch", opt["train"]["epoch"]) - model.past_epoch, num_nodes=args.num_nodes, precision = opt.get("precision",32), gpus=args.gpus,strategy=DDPPlugin(find_unused_parameters=False),checkpoint_callback = False, logger = False, profiler = SimpleProfiler(), sync_batchnorm = sync_batchnorm, replace_sampler_ddp = False, check_val_every_n_epoch = check_val_every_n_epoch, **kwargs)
plt.fit(model,DESCdata_prep(opt))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", default = 1, type = int)
parser.add_argument("--acce", default = "ddp", type = str)
parser.add_argument("--num_nodes", default = 1, type = int)
parser.add_argument("--checkpoint", default = None, type = str)
parser.add_argument("--resume", action="store_true")
parser.add_argument('--opt', type=str, default = "", help='Path to option YAML file.')
args = parser.parse_args()
main(args)