-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
executable file
·416 lines (297 loc) · 12.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 26 20:58:33 2020
@author: Yan
"""
import torch
import os
import json
import numpy as np
from PIL import Image
import zipfile
from util import read_image
#################################################
######## dataloader for different database ######
#################################################
def zipToName(data):
'''
read the data, and map the name of videos to each frame
Parameters
----------
data : zipfile, the file that contains all frames
'''
data_name = dict()
for file in data.namelist():
if len(file.split("/")) != 2:
continue
name,f = file.split("/")
if name in data_name:
data_name[name].append(f)
else:
data_name[name] = [f]
return data_name,max([len(i) for i in data_name.values()])
def loadframes(data_name,data,name,frequency,max_len):
'''
load and sample the frames according to frequency, resize the frames
Parameters
----------
data : zipfile, the loaded zip of input frames
name : str, the name of video to load
data_name : dict, match the name of each videos to its frames
max_len : int, the maximum length of sampled videos
frequency : the frequency used to sample the frames, which decide how many frames used to represent
the videos
'''
values = []
files = [f for f in data_name[name] if f.endswith(".jpg") and f.replace(".jpg","").isnumeric()]
files = sorted(files, key = lambda x : int(x.replace(".jpg","")))
last = [files[-1]] if len(files) % frequency >= 2/3 * frequency else []
start = 0
files = np.concatenate([np.array(files)[start::frequency],last])
l = 0
pad_x = np.zeros((max_len,3,48,48))
for frame in files:
try:
cur = read_image(data, os.path.join(name,frame))
except:
cur = read_image(data, name+"/"+frame)
cur = np.swapaxes(np.asarray(cur.resize((48,48))), 2, 0)
values.append(cur)
l+=1
x = np.array(values)
l = max_len - l
pad_x[l:] = x
return pad_x,l
class UVANEMODataGenerator(torch.utils.data.Dataset):
'''
The minibatch generater for UVA-NEMO database used when training the models
Parameters
----------
frame_path : str, path, the path that contains the zipped frames.
label_path : str, path, the label for each videos
frequency : the frequency used to sample the frames, which decide how many frames used to represent
the videos
test : boolean, default false, whether it is the generator used for test
scale : the ratio used to scale the value of each frames
Attributes
----------
data : zipfile, the loaded zip of input frames
data_name : dict, match the name of each videos to its frames
number_of_data : int, the number of videos used
max_len : int, the maximum length of sampled videos
index_name_dic : dict, map ints to the video name
'''
def __init__(self,frame_path,label_path, frequency = 5,test = False ,scale = 255):
self.data = zipfile.ZipFile(frame_path)
self.data_name = dict()
self.frequency = frequency
self.label_path = label_path
self.scale = scale
self.test = test
self.__dataset_information()
def __dataset_information(self):
'''
Count how many videos are in the folder, map video names to each frames,
map ints to video names
Parameters
----------
'''
self.data_name,self.max_len = zipToName(self.data)
self.max_len = self.max_len//self.frequency + 2
self.numbers_of_data = 0
self.index_name_dic = dict()
with open(self.label_path) as f:
labels = json.load(f)
for index,(k,v) in enumerate(labels.items()):
self.index_name_dic[index] = [k,v]
self.numbers_of_data = index + 1
def __len__(self):
'''
return the length of videos
Parameters
----------
'''
return self.numbers_of_data
def __getitem__(self,idx):
'''
Given the int, load the correpsonding frames and labels
Parameters
----------
'''
ids = self.index_name_dic[idx]
name,label = ids
y = np.zeros(1)
y[0] = label
pad_x,l = loadframes(self.data_name, self.data, name, self.frequency, self.max_len)
return pad_x/self.scale,y,l
class BBCDataGenerator(torch.utils.data.Dataset):
'''
The minibatch generater for BBC database used when training the models
Parameters
----------
frame_path : str, path, the path that contains the zipped frames.
fold : list, contains the index of videos that used for training
frequency : the frequency used to sample the frames, which decide how many frames used to represent
the videos
test : boolean, default false, whether it is the generator used for test
scale : the ratio used to scale the value of each frames
Attributes
----------
data : zipfile, the loaded zip of input frames
data_name : dict, match the name of each videos to its frames
number_of_data : int, the number of videos used
max_len : int, the maximum length of sampled videos
index_name_dic : dict, map ints to the video name
'''
def __init__(self,frame_path, fold = None, frequency = 5,test = False ,scale = 255):
self.fold = np.array(fold).flatten()
self.data = zipfile.ZipFile(frame_path)
self.data_name,self.max_len = zipToName(self.data)
self.max_len = self.max_len//frequency + 2
self.file_dict = dict()
self.frequency = frequency
self.numbers_of_data = len(self.fold)
self.scale = scale
self.test = test
def __len__(self):
return self.numbers_of_data
def __getitem__(self,idx):
ids = self.fold[idx]
y = np.zeros(1)
name = sorted(list(self.optical_file_name.keys()))[ids]
if "Genuinesmilecontent" in name:
y[0] = 1
pad_x,l = loadframes(self.data_name, self.data, name, self.frequency, self.max_len)
return pad_x/self.scale,y,l
class MMIDataGenerator(torch.utils.data.Dataset):
'''
The minibatch generater for MMI database used when training the models
Parameters
----------
fold : list, contains the subjects used for this generator
data_path : str, path, the path that contains the zipped frames.
label_path : str, path, the label for each videos
frequency : tuple,[int,int] the frequency used to sample the frames, which decide how many frames used to represent
the videos. In the MMI databases, different fps are used.
test : boolean, default false, whether it is the generator used for test
scale : the ratio used to scale the value of each frames
Attributes
----------
data : zipfile, the loaded zip of input frames
data_name : dict, match the name of each videos to its frames
number_of_data : int, the number of videos used
max_len : int, the maximum length of sampled videos
index_name_dic : dict, map ints to the video name
'''
def __init__(self,fold, data_path, label_path, frequency = (5,6),test = False ,scale = 255):
self.fold = fold
self.data = zipfile.ZipFile(data_path)
self.data_name,self.max_len = zipToName(self.data)
self.frequency = frequency
self.scale = scale
self.test = test
self.__dataset_information(label_path)
def __dataset_information(self,label_path):
'''
Count how many videos are in the folder, map video names to each frames,
map ints to video names
Parameters
----------
'''
self.numbers_of_data = 0
with open(label_path) as f:
labels = json.load(f)
index = 0
self.index_name_dic = dict()
for k,v in labels.items():
if v[1] in self.fold:
continue
self.index_name_dic[index] = [k,v[0]]
index += 1
self.numbers_of_data = index
def __len__(self):
'''
return the length of videos
Parameters
----------
'''
return self.numbers_of_data
def __getitem__(self,idx):
'''
Given the int, load the correpsonding frames and labels
Parameters
----------
'''
ids = self.index_name_dic[idx]
name,label = ids
y = np.zeros(1)
y[0] = label
pad_x,l = loadframes(self.data_name, self.data, name, self.frequency, self.max_len//(self.frequency[label])+2)
return pad_x/self.scale,y,l
class SPOSDataGenerator(torch.utils.data.Dataset):
'''
The minibatch generater for SPOS database used when training the models
Parameters
----------
fold : dict, that contains the map of ints to video
frequency : tuple,[int,int] the frequency used to sample the frames, which decide how many frames used to represent
the videos. In the MMI databases, different fps are used.
test : boolean, default false, whether it is the generator used for test
scale : the ratio used to scale the value of each frames
Attributes
----------
data_name : dict, match the name of each videos to its frames
number_of_data : int, the number of videos used
max_len : int, the maximum length of sampled videos
index_name_dic : dict, map ints to the video name
'''
def __init__(self,fold, frequency = 5,test = False ,scale = 255):
self.fold = fold
self.data_name = dict()
for file in self.fold.values():
for f in os.listdir(file):
if not f.endswith(".bmp"):
continue
if file in self.data_name:
self.data_name[file].append(f)
else:
self.data_name[file] = [f]
self.max_len = max([len(list(i)) for i in self.data_name.values()])//frequency + 2
self.frequency = frequency
self.scale = scale
self.numbers_of_data = len(self.fold)
def __len__(self):
'''
return the length of videos
Parameters
----------
'''
return self.numbers_of_data
def __getitem__(self,idx):
'''
Given the int, load the correpsonding frames and labels
Parameters
----------
'''
name = self.fold[idx]
y = np.zeros(1)
if "spontaneous" in name:
y[0] = 1
values = []
files = [f for f in self.data_name[name] if f.endswith(".bmp") and f.replace(".bmp","").isnumeric()]
files = sorted(files, key = lambda x : int(x.replace(".bmp","")))
last = [files[-1]] if len(files) % self.frequency >= 2/3 * self.frequency else []
start = 0
files = np.concatenate([np.array(files)[start::self.frequency],last])
l = 0
pad_x = np.zeros((self.max_len,3,48,48)) #52
for frame in files:
cur = Image.open(os.path.join(name,frame)).convert("RGB")
cur = np.swapaxes(np.asarray(cur.resize((48,48))), 2, 0)
values.append(cur)
l+=1
x = np.array(values)
l = self.max_len - l
pad_x[l:] = x
return pad_x/self.scale,y,l