-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKDD99_utils.py
308 lines (236 loc) · 10.4 KB
/
KDD99_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
from os.path import join as oj
from math import factorial as fac
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from sklearn import datasets as sk_datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from dirichlet import mle
from utils import cwd
class KddData(object):
def __init__(self, batch_size):
kddcup99 = sk_datasets.fetch_kddcup99()
self._encoder = {
'protocal': LabelEncoder(),
'service': LabelEncoder(),
'flag': LabelEncoder(),
'label': LabelEncoder()
}
self.batch_size = batch_size
data_X, data_y = self.__encode_data(kddcup99.data, kddcup99.target)
self.train_dataset, self.test_dataset = self.__split_data_to_tensor(data_X, data_y)
self.train_dataloader = DataLoader(self.train_dataset, self.batch_size, shuffle=True)
self.test_dataloader = DataLoader(self.test_dataset, self.batch_size, shuffle=True)
def __encode_data(self, data_X, data_y):
self._encoder['protocal'].fit(list(set(data_X[:, 1])))
self._encoder['service'].fit(list(set(data_X[:, 2])))
self._encoder['flag'].fit((list(set(data_X[:, 3]))))
self._encoder['label'].fit(list(set(data_y)))
data_X[:, 1] = self._encoder['protocal'].transform(data_X[:, 1])
data_X[:, 2] = self._encoder['service'].transform(data_X[:, 2])
data_X[:, 3] = self._encoder['flag'].transform(data_X[:, 3])
data_X = np.pad(data_X, ((0, 0), (0, 64 - len(data_X[0]))), 'constant').reshape(-1, 1, 8, 8)
data_y = self._encoder['label'].transform(data_y)
return data_X, data_y
def __split_data_to_tensor(self, data_X, data_y):
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.3)
train_dataset = TensorDataset(
(torch.from_numpy(X_train.astype(float))).float(),
(torch.from_numpy(y_train)).long()
)
test_dataset = TensorDataset(
torch.from_numpy(X_test.astype(float)).float(),
torch.from_numpy(y_test).long()
)
return train_dataset, test_dataset
def decode(self, data, label=False):
if not label:
_data = list(data)
_data[1] = self._encoder['protocal'].inverse_transform([_data[1]])[0]
_data[2] = self._encoder['service'].inverse_transform([_data[2]])[0]
_data[2] = self._encoder['flag'].inverse_transform([_data[3]])[0]
return _data
return self._encoder['label'].inverse_transform(data)
def encode(self, data, label=False):
if not label:
_data = list(data)
_data[1] = self._encoder['protocal'].transform([_data[1]])[0]
_data[2] = self._encoder['service'].transform([_data[2]])[0]
_data[3] = self._encoder['flag'].transform([_data[3]])[0]
return _data
return self._encoder['label'].transform([data])[0]
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self, in_dim, n_class):
super(CNN, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_dim, 6, 3, stride=1, padding=1),
nn.BatchNorm2d(6),
nn.ReLU(True),
nn.Conv2d(6, 16, 3, stride=1, padding=0),
nn.BatchNorm2d(16),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(144, 512),
nn.Linear(512, 256),
nn.Linear(256, n_class)
)
def forward(self, x):
out = self.conv(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
class CNN_small(nn.Module):
def __init__(self, in_dim, n_class):
super(CNN_small, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_dim, 4, 3, stride=1, padding=1),
nn.BatchNorm2d(4),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(64, n_class)
)
def forward(self, x):
out = self.conv(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
class MLP(nn.Module):
def __init__(self, input_dim=64, output_dim=23, device=None):
super(MLP, self).__init__()
self.input_dim=input_dim
self.fc1 = nn.Linear(input_dim, 1024)
self.fc2 = nn.Linear(1024, 128)
self.fc3 = nn.Linear(128, output_dim)
def forward(self, x):
x = x.view(-1, self.input_dim)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
# return x
return torch.softmax(x, dim=1)
class LogisticRegression(nn.Module):
def __init__(self, input_dim=64, output_dim=23, device=None):
super(LogisticRegression, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.linear = torch.nn.Linear(self.input_dim, self.output_dim)
def forward(self, x):
x = x.view(-1, 64)
outputs = self.linear(x)
return outputs
# return torch.softmax(outputs, dim=1)
def get_loaders():
dataset = KddData(batch_size=128)
train_dataset, test_dataset = dataset.train_dataset, dataset.test_dataset
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, num_workers=1, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=512, num_workers=1, pin_memory=True)
'''
# subsample it by 1000
dataset_proportion = 0.01
smaller = list(range(0, len(test_dataset), int(1//dataset_proportion)))
subsampled_test_set = torch.utils.data.Subset(test_dataset, smaller)
test_loader = torch.utils.data.DataLoader(subsampled_test_set, batch_size=512, num_workers=1, pin_memory=True)
'''
return train_loader, test_loader
def get_test_loader_alpha():
try:
true_alpha = np.loadtxt(oj('saved_models', 'KDDCup', 'test_loader_alpha'))
except:
_, test_loader = get_loaders()
temp = []
for data, labels in test_loader:
a = F.one_hot(labels, num_classes=23).float()
# softmax to get the true alpha
a = torch.softmax(a, dim=1)
temp.append(a.detach().cpu())
temp = torch.vstack(temp).numpy()
true_alpha = mle(temp, method='fixpoint')
np.savetxt(oj('saved_models', 'KDDCup', 'test_loader_alpha'), np.asarray(true_alpha))
'''
X, Y = get_X_Y()
# Split test and train data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42)
enc = OneHotEncoder()
D = enc.fit_transform(Y_test).toarray()
# softmax to get the true alpha
D = softmax(10 * D)
true_alpha = mle(D)
np.savetxt(oj('saved_models', 'KDDCup', 'test_loader_alpha'), np.asarray(true_alpha))
'''
print('true alpha:', true_alpha)
return true_alpha
def get_model_alphas(individual_N=3, model_dirs=[]):
return [np.loadtxt(oj('saved_models', 'KDDCup', model_dir, 'model_alphas'))[:individual_N] for model_dir in model_dirs]
MODEL_LABELS =['CNN', 'MLP', 'LR']
DATASIZE_LABELS = [str(0.001), str(0.01), str(0.1)]
def get_models(individual_N=3, exp_type='models', model_type='LogisticRegression'):
'''
Load saved models.
NOTE: Change the directories to your saved models.
'''
if exp_type == 'datasets':
models = []
# model_type = 'CNN_small'
exp_dir = oj('saved_models', 'KDDCup', 'datasets_variation', model_type)
# exp_dir = oj('saved_models', 'KDDCup', 'datasets_variation', model_type)
with cwd(exp_dir):
print("Loading order of dataset proportions:", sorted(os.listdir(), key=float))
for saved_dir in sorted(os.listdir(), key=float):
for i in range(individual_N):
if model_type == 'LogisticRegression':
model = LogisticRegression()
else:
model = CNN_small()
model.load_state_dict(torch.load(oj(saved_dir,'-saved_model-{}.pt'.format(i+1))))
models.append(model)
return models
elif exp_type == 'models':
models = []
exp_dir = oj('saved_models', 'KDDCup', 'models_variation', '2022-01-26-14:00')
exp_dir = oj('saved_models', 'KDDCup', 'models_variation', '2022-01-26-14:08')
with cwd(exp_dir):
for i in range(individual_N):
model = CNN(1, 23)
model.load_state_dict(torch.load(oj('CNN', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
for i in range(individual_N):
model = MLP(64, 23)
model.load_state_dict(torch.load(oj('MLP', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
for i in range(individual_N):
model = LogisticRegression(64, 23)
model.load_state_dict(torch.load(oj('LogisticRegression', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
return models
elif exp_type == 'precise':
models = []
exp_dir = oj('saved_models', 'KDDCup', 'models_variation', '2022-01-26-14:08')
exp_dir = oj('saved_models', 'KDDCup', 'models_variation', '2022-01-26-14:00')
with cwd(exp_dir):
for i in range(individual_N):
model = CNN(1, 23)
model.load_state_dict(torch.load(oj('CNN', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
for i in range(individual_N):
model = CNN(1, 23)
model.load_state_dict(torch.load(oj('CNN', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
for i in range(individual_N):
model = CNN(1, 23)
model.load_state_dict(torch.load(oj('CNN', '-saved_model-{}.pt'.format(i+1))))
models.append(model)
return models
else:
raise NotImplementedError(f"Experiment type: {exp_type} is not implemented.")