Skip to content

Commit

Permalink
upload linear transformation blog
Browse files Browse the repository at this point in the history
  • Loading branch information
XieYHccc committed Dec 13, 2023
1 parent 17abd86 commit 274bae0
Show file tree
Hide file tree
Showing 3 changed files with 13 additions and 13 deletions.
11 changes: 0 additions & 11 deletions _layouts/default.html
Original file line number Diff line number Diff line change
Expand Up @@ -6,17 +6,6 @@
<link rel="icon" href="/favicon.ico">
<link rel="stylesheet" href="/css/style.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:700,400|Gentium+Book+Basic:700,400italic,400|Inconsolata" rel='stylesheet' type='text/css'>
{% if page.mathjax %}
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
inlineMath: [['\\(','\\)'], ['$', '$']]
}
});
</script>
<script type="text/javascript" async src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
{% endif %}
</head>
<body>
<nav>
Expand Down
13 changes: 12 additions & 1 deletion _layouts/post.html
Original file line number Diff line number Diff line change
Expand Up @@ -5,4 +5,15 @@
<h1>{{ page.title }}</h1>
<time class="post-date" datetime="{{ page.date | date: '%Y-%m-%d' }}">{{page.date | date: "%b %d, %Y"}}</time>
{{ content }}
</article>
</article>
{% if page.mathjax %}
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
inlineMath: [['\\(','\\)'], ['$', '$']]
}
});
</script>
<script type="text/javascript" async src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
{% endif %}
2 changes: 1 addition & 1 deletion _posts/2023-11-05-Linear-Transformation-And-Matrix.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ mathjax: true

代数学中,空间指的是赋予了某种运算结构的集合,“变换”是空间到空间的映射,而线性变换则是线性空间到线性空间的映射。定义如下:

\\(V_1\\) 和 $V_2$ 是两个线性空间,$f:V_1\rightarrow V_2$ 是 $V_1$ 到 $V_2$ 的映射,$K$ 是域。如果满足:
$V_1$ 和 $V_2$ 是两个线性空间,$f:V_1\rightarrow V_2$ 是 $V_1$ 到 $V_2$ 的映射,$K$ 是域。如果满足:

$$ \forall u,v\in V_1, \forall c\in K $$

Expand Down

0 comments on commit 274bae0

Please sign in to comment.