Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
- Solution1: dp速度慢;因为dp的定义不对.
- 正确答案在Solution2: 其中dp[i] 表示前i个的结尾的最大子序列合
package leetcode53_MaximumSubarray;
public class Solution {
public int maxSubArray(int[] nums) {
int result = Integer.MIN_VALUE;
if (nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
// i, j is from index i to index j;
int[] dp = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
for (int j = i; j < nums.length; j++) {
if (i == j) {
dp[j] = nums[i];
} else {
dp[j] = dp[j - 1] + nums[j];
}
result = Math.max(dp[j], result);
}
}
return result;
}
public static void main(String[] args) {
System.out.println(new Solution().maxSubArray(new int[] {-2, 1, -3, 4, -1, 2, 1, -5, 4}));
}
}
package leetcode53_MaximumSubarray;
public class Solution2 {
public int maxSubArray(int[] nums) {
if (nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
// dp[i] 表示前i个的结尾的最大子序列合
int[] dp = new int[nums.length];
int result = nums[0];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
result = Math.max(result, dp[i]);
}
return result;
}
public static void main(String[] args) {
System.out.println(new Solution2().maxSubArray(new int[] {-2, -1}));
}
}