Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
Search for a node to remove. If the node is found, delete the node. Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7]
key = 3
5
/ \
3 6
/ \ \
2 4 7
Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the following BST.
5
/ \
4 6
/ \
2 7
Another valid answer is [5,2,6,null,4,null,7].
5
/ \
2 6
\ \
4 7
- 最难的就是想清楚每个函数传入什么, 返回什么
- findTargetNodeAndDelete 找到target值并删除, 然后返回原来的树的节点.
- deleteMin 删除最小值, 然后返回这个最小值.
因为难点在于说如何保持这个节点的原有结构的情况下删除. 这个利用了递归的返回值来保持位置.
package leetcode450_DeleteNodeInABST;
import utils.TreeNode;
public class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) return null;
root = findTargetNodeAndDelete(root, key);
return root;
}
public TreeNode findTargetNodeAndDelete(TreeNode node, int key) {
if (node != null && node.val != key) {
if (node.val > key) {
node.left = findTargetNodeAndDelete(node.left, key);
} else {
node.right = findTargetNodeAndDelete(node.right, key);
}
}else{
if (node == null || (node.left == null && node.right == null)) return null;
if (node.right == null) return node.left;
if (node.left == null) return node.right;
return innerDeleteNode(node);
}
return node;
}
public TreeNode innerDeleteNode(TreeNode node) {
// node has left and right child;
TreeNode minNode = deleteMin(node.right);
minNode.left = node.left;
if(minNode != node.right){
minNode.right = node.right;
}
node.right = null;
node.left = null;
return minNode;
}
public TreeNode deleteMin(TreeNode node) {
if (node != null && node.left != null && node.left.left != null) {
return deleteMin(node.left);
}
TreeNode deletedNode = node.left;
if (deletedNode == null) return node;
node.left = deletedNode.right;
return deletedNode;
}
}