-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAugment.py
61 lines (56 loc) · 2.19 KB
/
Augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from PIL import Image, ImageOps,ImageEnhance
import random
import torchvision
import torchvision.transforms as transforms
rotate_range = (-10, 10)
shift_range = (0.1, 0.1) # Shift range as a fraction of the image size
scale_range = (0.9, 1.1) # Zoom scale range
#Define data augmentation and further preprocessing steps
def random_color():
return random.choice([(0), (128), (255)])
class RandomPadding:
def __init__(self, min_pad=15, max_pad=45):
self.min_pad = min_pad
self.max_pad = max_pad
def __call__(self, img):
pad_left = random.randint(self.min_pad, self.max_pad)
pad_top = random.randint(self.min_pad, self.max_pad)
pad_right = random.randint(self.min_pad, self.max_pad)
pad_bottom = random.randint(self.min_pad, self.max_pad)
padding = (pad_left, pad_top, pad_right, pad_bottom)
pad_color = random_color()
img = ImageOps.expand(img, padding, pad_color)
return img
class RandomZoom:
def __init__(self, zoom_range=(0.95, 1.2)):
self.zoom_range = zoom_range
def __call__(self, img):
width, height = img.size
zoom_factor = random.uniform(*self.zoom_range)
new_width, new_height = int(width * zoom_factor), int(height * zoom_factor)
img = img.resize((new_width, new_height), resample=Image.BICUBIC)
if zoom_factor > 1:
left = (new_width - width) // 2
top = (new_height - height) // 2
img = img.crop((left, top, left + width, top + height))
else:
left = (width - new_width) // 2
top = (height - new_height) // 2
img = ImageOps.expand(img, (left, top, left, top), fill=0)
return img
class RandomInvert:
def __call__(self, img):
if random.random() < 0.5:
img = ImageOps.invert(img)
return img
data_transforms = transforms.Compose([
RandomPadding(),
RandomZoom(),
transforms.Resize((300,300)),
transforms.RandomAffine(degrees=rotate_range, translate=shift_range, scale=scale_range),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Grayscale(),
RandomInvert(),
transforms.ToTensor()
])