-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
333 lines (279 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
from os import path
import random
from types import SimpleNamespace
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import examples.mnist_models as mnist_models
import examples.cifar10_models as cifar10_models
import quantization
from quantization.stats import *
from quantization.metrics import *
from quantization.retraining import *
settings_dict = {
'dataset': 'cifar10', # 'mnist', 'cifar10'
'arch': 'PARN18_nores_maxpool', # 'Net', 'Net_sigmoid', 'Net_tanh', 'LeNet', 'LeNetDropout', 'PARN18', 'PARN18_nores', 'PARN18_nores_maxpool'
'workers': 4, # Increasing that seems to require A LOT of RAM memory (default was 8)
'epochs': 10,
'retrain_epochs': 5,
'start_epoch': 0, # Used for faster restart
'batch_size': 64, # default was 256
'val_batch_size': 256, # Keep that low to have enough GPU memory for scaling validation
'stats_batch_size': 1000, # This should be a divider of the dataset size
'lr': 0.01, # Learning rate, default was 0.001
'lr_retrain': 0.01,
'gamma': 0.9, # Multiplicative reduction of the learning rate at each epoch, default was 0.7, 0.95 for cifar10 is good
'gamma_retrain': 0.85,
'momentum': 0.9, # Gradient momentum, default was 0.9
'momentum_retrain': 0.5,
'weight_decay': 0.0005, # L2 regularization parameter, default was 0.0005
'weight_decay_retrain': 0.0005,
'print_interval': 1,
'print_clamped_values': False, # Print for each quantized layer how many values get clamped to the min / max of the range they have to be in
'verbose': False, # Print the min / max values for each batch at each quantized layer (at qlayer input, qlayer output and after post-quantization)
'print_fib_info': True, # Print the proportions of Fibonacci-encoded weights after each retraining
'val_interval': 5, # Use a large value if you want to avoid wasting time computing the test accuracy and printing it.
'seed': None, # default: None
'quantize': True,
'strategy': 'random', # quantile, reverse_quantile, random
'scheme': 'per_layer', # per_layer, per_out_channel
'statistics': 'global', # 'global' (global min/max statistics => less overflows), 'average' (min/max statistics averaged over the inputs => more entropy)
'weight_bits': 8,
'acc_bits': 32,
'iterative_steps': [0.2, 0.4, 0.6, 0.8, 1.0],
'log_dir': "logs/",
'pretrain': False,
'load_model': True,
'load_stats': True,
'load_qmodel_fib': True
}
def main():
args = SimpleNamespace(**settings_dict)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
shuffle = False
warnings.warn('You have chosen to seed training. This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! You may see unexpected behavior when restarting from checkpoints.')
else:
shuffle = True
main_worker(args, shuffle=shuffle)
def main_worker(args, shuffle=True):
# Determine the device
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
if args.dataset == 'mnist':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST('', train=True, download=True, transform=transform)
val_dataset = datasets.MNIST('', train=False, transform=transform)
if args.arch == 'Net':
model = mnist_models.Net(non_linearity=nn.ReLU).to(device)
elif args.arch == 'Net_sigmoid':
model = mnist_models.Net(non_linearity=nn.Sigmoid).to(device)
elif args.arch == 'Net_tanh':
model = mnist_models.Net(non_linearity=nn.Tanh).to(device)
elif args.arch == 'NetNoPool':
model = mnist_models.NetNoPool(non_linearity=nn.ReLU).to(device)
elif args.dataset == 'cifar10':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))])
train_dataset = datasets.CIFAR10('CIFAR10', train=True, download=True, transform=transform)
val_dataset = datasets.CIFAR10('CIFAR10', train=False, download=True, transform=transform)
if args.arch == 'LeNet':
model = cifar10_models.LeNet(dropout=False).to(device)
if args.arch == 'LeNetDropout':
model = cifar10_models.LeNet(dropout=True).to(device)
if args.arch == 'PARN18_nores':
model = cifar10_models.parn(depth=18).to(device)
if args.arch == 'PARN18_nores_maxpool':
model = cifar10_models.parn(depth=18, pooling=nn.MaxPool2d).to(device)
if args.arch == 'PARN18_nores_noaffine':
model = cifar10_models.parn(depth=18, affine_batch_norm=False).to(device)
else:
raise ValueError("Dataset {} not supported. Use mnist or cifar10.".format(args.dataset))
saves_path = 'saves/' + args.dataset + '/' + args.arch + '/'
model_path = saves_path + 'model.pth'
qmodel_fib_path = saves_path + 'qmodel_fib.pth'
# Create the directory if it does not exist yet, and then save the learned model
if not path.exists(saves_path):
os.makedirs(saves_path)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = quantization.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, weight_bits=args.weight_bits)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=shuffle,
num_workers=args.workers, pin_memory=True)
train_stats_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.stats_batch_size, shuffle=shuffle,
num_workers=args.workers, pin_memory=True)
# Batch containing a single datapoint to precompute the values that are constant
# with respect to the input. We only need the datapoint sizes.
dummy_datapoint, _ = train_dataset[0]
dummy_datapoint = dummy_datapoint.unsqueeze(0).to(device)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size, shuffle=shuffle,
num_workers=args.workers, pin_memory=True)
print_dataset_name(args.dataset)
# optionally resume from a checkpoint
if args.load_model:
if os.path.isfile(model_path):
print("Loading checkpoint '{}'".format(model_path))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Loaded checkpoint '{}'"
.format(model_path))
else:
print(Color.RED + "No checkpoint found at '{}'".format(model_path) + Color.END)
if args.pretrain:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=args.gamma)
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[75, 150], gamma=args.gamma)
print_header(color=Color.UNDERLINE)
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, device)
scheduler.step()
# evaluate on validation set
if (epoch+1) % args.val_interval == 0:
validate(val_loader, model, criterion, args, device, title='Test unscaled')
save_checkpoint({
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, filename=model_path)
stats = load_or_gather_stats(model, train_stats_loader, device, args.load_stats, saves_path)
if args.load_qmodel_fib:
if os.path.isfile(qmodel_fib_path):
# In order to do that properly we would need a qmodel class and use its constructor instead of calling compute_qmodel
# and making useless computations to then load the values
print("Computing qmodel from model to be able to copy the save into it")
qmodel_fib = compute_qmodel(model, stats, optimizer, dummy_datapoint, device, proportions=args.iterative_steps, step=0, bits=args.weight_bits,
acc_bits=args.acc_bits, fib=True, strategy=args.strategy, scheme=args.scheme, key=args.statistics)
print("Loading checkpoint '{}'".format(qmodel_fib_path))
checkpoint = torch.load(qmodel_fib_path)
qmodel_fib.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Loaded checkpoint '{}'"
.format(qmodel_fib_path))
print_header(Color.UNDERLINE)
validate(val_loader, qmodel_fib, criterion, args, device, quantized=True, fib=True, title='Test saved qmodel_fib')
else:
print(Color.RED + "No checkpoint found at '{}'".format(qmodel_fib_path) + Color.END)
else:
optimizer = quantization.SGD(model.parameters(), args.lr_retrain, momentum=args.momentum_retrain, weight_decay=args.weight_decay_retrain, weight_bits=args.weight_bits)
quantization_epochs = len(args.iterative_steps)
for qepoch in range(quantization_epochs):
print()
print_quantization_epoch(qepoch, quantization_epochs, args.iterative_steps[qepoch] * 100)
print_header(color=Color.UNDERLINE)
if qepoch == 0: # The int quantized qmodel is only produced once
validate(val_loader, model, criterion, args, device, title='Test original network')
qmodel_int = compute_qmodel(model, stats, optimizer, dummy_datapoint, device, bits=args.weight_bits,
acc_bits=args.acc_bits, fib=False, scheme=args.scheme, key=args.statistics)
validate(val_loader, qmodel_int, criterion, args, device, quantized=True, fib=False, title='Test int')
qmodel_fib = compute_qmodel(model, stats, optimizer, dummy_datapoint, device, proportions=args.iterative_steps, step=0, bits=args.weight_bits,
acc_bits=args.acc_bits, fib=True, strategy=args.strategy, scheme=args.scheme, key=args.statistics)
else:
increase_fib_proportion(qmodel_fib, optimizer, args.weight_bits, args.iterative_steps, qepoch, device, strategy=args.strategy)
precompute_constants(qmodel_fib, dummy_datapoint)
title = 'Test ' + '{0:.5f}'.format(args.iterative_steps[qepoch] * 100).rstrip('0').rstrip('.') + '% fib'
validate(val_loader, qmodel_fib, criterion, args, device, quantized=True, fib=True, title=title)
# Plug the fib encoded values inside of the original model
update_model(model, qmodel_fib, device)
optimizer.reset_lr(args.lr_retrain)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=args.gamma_retrain)
optimizer.reset_momentum()
validate(val_loader, model, criterion, args, device, title='Test unscaled')
for epoch in range(args.start_epoch, args.retrain_epochs):
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, device, retrain=True)
scheduler.step()
# evaluate on validation set once in a while to get insight about what's going on
if (epoch+1) % args.val_interval == 0:
validate(val_loader, model, criterion, args, device, title='Test unscaled')
update_qmodel(qmodel_fib, model, device)
precompute_constants(qmodel_fib, dummy_datapoint)
title = title + ' retrained'
validate(val_loader, qmodel_fib, criterion, args, device, quantized=True, fib=True, title=title)
if args.print_fib_info:
print_fib_info(average_proportion_fib(qmodel_fib, weighted=True),
average_proportion_fib(qmodel_fib, weighted=False),
average_distance_fib(qmodel_fib, weighted=True),
average_distance_fib(qmodel_fib, weighted=False))
save_checkpoint({
'state_dict': qmodel_fib.state_dict(),
'optimizer': optimizer.state_dict(),
}, filename=qmodel_fib_path)
# Print all the parameters of the neural network to get an idea of how the weights are quantized
print_seq_model(qmodel_fib, how='no') # Use how='long' to print all parameters and stats about encoding
def train(train_loader, model, criterion, optimizer, epoch, args, device, retrain=False):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
start = time.time()
lr = optimizer.param_groups[0]['lr']
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to(device)
target = target.to(device)
# compute output
output = model(data)
loss = criterion(output, target)
# measure accuracy and record loss
acc1 = accuracy(output, target, topk=(1,))[0]
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.print_interval == 0:
# measure elapsed time
batch_time.update(time.time() - start)
start = time.time()
print_train(epoch, args.retrain_epochs if retrain else args.epochs, batch_idx, len(train_loader),
batch_time, losses, top1, lr, persistent=False)
print_train(epoch, args.retrain_epochs if retrain else args.epochs, len(train_loader)-1, len(train_loader), batch_time, losses, top1, lr)
def validate(val_loader, model, criterion, args, device, quantized=False, fib=False, title=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
color = Color.CYAN if quantized and not fib else Color.GREEN if quantized and fib else Color.PURPLE
if title is None:
title = 'Test Int' if quantized and not fib else 'Test Fib' if quantized and fib else 'Test'
model.eval()
with torch.no_grad():
end = time.time()
for batch_idx, (data, target) in enumerate(val_loader):
data = data.to(device)
target = target.to(device)
# compute output
if quantized:
data = data.to(device)
output = qmodel_forward(model, data, print_clamped_values=args.print_clamped_values, verbose=args.verbose)
loss = torch.tensor(-1)
else:
output = model(data)
loss = criterion(output, target)
# measure accuracy and record loss
acc1 = accuracy(output, target, topk=(1,))[0]
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_interval == 0:
print_test(batch_idx, len(val_loader), batch_time, losses, top1, persistent=False, color=color, title=title)
print_test(len(val_loader)-1, len(val_loader), batch_time, losses, top1, persistent=True, color=color, title=title)
return top1.avg
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if __name__ == '__main__':
main()