-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
679 lines (575 loc) · 23.6 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# RUN KEYS
from configuration import data_path
subject_keys = ['P01','P02','P03','P04','P05',
'P06','P07','P08','P09','P10',
'P11','P12','P13','P14','P15',
'P16','P17','P18','P19','P20',
'P21','P23','P24','P25', # P22 not in list because artifacted
'P26','P27','P28','P29','P30','P31']
session_keys = ['baseline','music','odor']
run_keys = [f'{sub_key}_{ses_key}' for sub_key in subject_keys for ses_key in session_keys]
baseline_keys = [f'{sub_key}_baseline' for sub_key in subject_keys]
stim_keys = [f'{sub_key}_{stim_key}' for sub_key in subject_keys for stim_key in ['music','odor']]
run_keys_stai = [f'{sub_key}_{ses_key}' for sub_key in subject_keys for ses_key in ['ses01','ses02']]
global_key = 'all'
music_mapper = {
1:'1_Classic',
2:'2_Electro',
3:'3_Hard_rock',
4:'4_Jazz',
5:'5_Metal',
6:'6_Pop',
7:'7_Raga',
8:'8_RAP_1',
9:'9_RAP_2',
10:'10_Variété',
}
tempos = {1:55,
2:128,
3:110,
4:122,
5:134,
6:60,
7:56,
8:68,
9:108,
10:81,
}
chosen_musics = {'P01': 10,
'P02': 10,
'P03': 10,
'P04': 3,
'P05': 9,
'P06': 4,
'P07': 7,
'P08': 10,
'P09': 9,
'P10': 9,
'P11': 10,
'P12': 10,
'P13': 9,
'P14': 7,
'P15': 8,
'P16': 10,
'P17': 10,
'P18': 8,
'P19': 10,
'P20': 5,
'P21': 10,
'P23': 8,
'P24': 6,
'P25': 5,
'P26': 9,
'P27': 9,
'P28': 9,
'P29': 9,
'P30': 5,
'P31': 10
}
répondeurs_resp = {'P01': 'non_répondeur', # those who increase cycle freq during music AND decrease cycle freq during odor = 16 répondeurs, 14 non répondeurs
'P02': 'répondeur',
'P03': 'non_répondeur',
'P04': 'répondeur',
'P05': 'répondeur',
'P06': 'répondeur',
'P07': 'répondeur',
'P08': 'répondeur',
'P09': 'non_répondeur',
'P10': 'répondeur',
'P11': 'répondeur',
'P12': 'non_répondeur',
'P13': 'non_répondeur',
'P14': 'répondeur',
'P15': 'non_répondeur',
'P16': 'non_répondeur',
'P17': 'non_répondeur',
'P18': 'répondeur',
'P19': 'non_répondeur',
'P20': 'répondeur',
'P21': 'non_répondeur',
'P23': 'non_répondeur',
'P24': 'non_répondeur',
'P25': 'répondeur',
'P26': 'répondeur',
'P27': 'répondeur',
'P28': 'répondeur',
'P29': 'non_répondeur',
'P30': 'répondeur',
'P31': 'non_répondeur'
}
# REREF
reref = 'average'
if reref == None:
eeg_chans = ['Fp1', 'Fz', 'F3', 'F7', 'FT9', 'FC5', 'FC1', 'C3', 'T7',
'TP9','CP5','CP1', 'Pz', 'P3', 'P7', 'O1', 'Oz', 'O2', 'P4',
'P8', 'TP10', 'CP6','CP2', 'C4', 'T8', 'FT10', 'FC6', 'FC2', 'F4', 'F8', 'Fp2']
else:
eeg_chans = ['Fp1', 'Fz', 'F3', 'F7', 'FT9', 'FC5', 'FC1', 'C3', 'T7',
'TP9','CP5','CP1', 'Pz', 'P3', 'P7', 'O1', 'Oz', 'O2', 'P4',
'P8', 'TP10', 'CP6','CP2', 'C4', 'T8', 'FT10', 'FC6', 'FC2', 'F4', 'F8', 'Fp2','Cz']
# USEFUL LISTS & DICTS
bio_chans = ['ECG','RespiNasale','RespiVentrale','GSR']
all_chans = ['Fp1', 'Fz', 'F3', 'F7', 'FT9', 'FC5', 'FC1', 'C3', 'T7', 'TP9',
'CP5','CP1', 'Pz', 'P3', 'P7', 'O1', 'Oz', 'O2', 'P4', 'P8', 'TP10',
'CP6','CP2', 'C4', 'T8', 'FT10', 'FC6', 'FC2', 'F4', 'F8', 'Fp2',
'ECG','RespiNasale','RespiVentrale','GSR','FCI']
participants_label = {
'P01':'DB01', # OK
'P02':'FB02', # OK
'P03':'ZB03', # OK
'P04':'EM04', # OK
'P05':'TM05', # OK
'P06':'AC06', # OK
'P07':'CB07', # OK
'P08':'ZB08', # OK
'P09':'MA09', # OK
'P10':'AA10', # OK
'P11':'MB11', # OK
'P12':'AP12', # OK
'P13':'ZC13', # OK
'P14':'FC14', # OK
'P15':'AP15', # OK
'P16':'EP16', # OK
'P17':'AG17', # OK
'P18':'MP18', # OK
'P19':'SR19', # OK
'P20':'MV20', # OK
'P21':'GA21', # OK
'P22':'SB22', # OK
'P23':'PB23', # OK
'P24':'MB24', # OK
'P25':'MB25', # OK
'P26':'EZ26', # OK
'P27':'AM27', # OK
'P28':'MC28', # OK
'P29':'ML29', # OK
'P30':'EG30', # OK
'P31':'MG31' # OK
}
session_duration = 600.
#### PROCESSING PARAMS
srate = 1000
fbands = {
'delta':[1,4],
'theta':[4,8],
'alpha':[8,12],
'beta':[12,30],
'low_gamma':[30,45],
'high_gamma':[55,100],
'very_high_gamma':[100,200],
}
ecg_inversion = {
'P01':1, # OK
'P02':1, # OK
'P03':-1, # OK
'P04':-1, # OK
'P05':-1, # OK
'P06':-1, # OK
'P07':1, # OK
'P08':-1, # OK
'P09':-1, # OK
'P10':-1, # OK
'P11':1, # OK
'P12':-1, # OK
'P13':-1, # OK
'P14':-1, # OK
'P15':1, # OK
'P16':-1, # OK
'P17':1, # OK
'P18':-1, # OK
'P19':-1, # OK
'P20':-1, # OK
'P21':-1, # OK
'P22':-1, # OK
'P23':1, # OK
'P24':-1, # OK
'P25':-1, # Ok
'P26':-1, # OK
'P27':-1, # OK
'P28':-1, # OK
'P29':-1, # OK
'P30':-1, # OK
'P31':-1 # OK
}
## ICA :
n_components_decomposition = 10
# components exclusion
ica_excluded_component = {
'P01':{'baseline':[0,1],'music':[0,1],'odor':[0,1]}, # OK
'P02':{'baseline':[0,1],'music':[0,3],'odor':[0,2]}, # OK
'P03':{'baseline':[0,2],'music':[0,1],'odor':[1,3]}, # OK
'P04':{'baseline':[5],'music':[5],'odor':[0,4]}, # OK
'P05':{'baseline':[0],'music':[0],'odor':[0]}, # OK
'P06':{'baseline':[1,3],'music':[1,3],'odor':[2,4]}, # OK
'P07':{'baseline':[1],'music':[3],'odor':[3]}, # OK
'P08':{'baseline':[1,3],'music':[0,2],'odor':[0,2]}, # OK
'P09':{'baseline':[1,2],'music':[1,3],'odor':[1,2]}, # OK
'P10':{'baseline':[0,1],'music':[0,1],'odor':[0,1]}, # OK
'P11':{'baseline':[0,4],'music':[0,4],'odor':[0,6]}, # OK
'P12':{'baseline':[0,1],'music':[0,1],'odor':[0,1]}, # OK
'P13':{'baseline':[0,2],'music':[0,1],'odor':[0,1]}, # OK
'P14':{'baseline':[0,5],'music':[0,5],'odor':[0,2]}, # OK
'P15':{'baseline':[0,4],'music':[0,1,4],'odor':[0,2]}, # OK
'P16':{'baseline':[0,2],'music':[0,1],'odor':[0,1]}, # OK
'P17':{'baseline':[3,4],'music':[3,4],'odor':[1,2]}, # OK
'P18':{'baseline':[0,1,2],'music':[0,2],'odor':[0,2]}, # OK
'P19':{'baseline':[0,2],'music':[0,2],'odor':[0,2]}, # OK
'P20':{'baseline':[0,3],'music':[0,2],'odor':[0,4]}, # OK
'P21':{'baseline':[0,1],'music':[0,2],'odor':[0,1]}, # OK
'P22':{'baseline':[0,6],'music':[0,2],'odor':[0,4]}, # OK
'P23':{'baseline':[0,1],'music':[0,1],'odor':[0,1]}, # OK
'P24':{'baseline':[1,3],'music':[1,2],'odor':[2,3]}, # OK
'P25':{'baseline':[0,2],'music':[0,3],'odor':[0,2]}, # OK
'P26':{'baseline':[0,2],'music':[0,2],'odor':[0,2]}, # OK
'P27':{'baseline':[0,4],'music':[0,6],'odor':[0,2]}, # OK
'P28':{'baseline':[0],'music':[0,2],'odor':[0,2]}, # OK
'P29':{'baseline':[2],'music':[2],'odor':[1]}, # OK
'P30':{'baseline':[0,1],'music':[0,1],'odor':[0,1]}, # OK
'P31':{'baseline':[0,2],'music':[0,2],'odor':[0,2]} # OK
}
bio_filters = {
'ECG':{'low':5,'high':45, 'ftype':'bessel', 'order':5} ,
'RespiNasale':{'low':0.02, 'high':1.5, 'ftype':'butter', 'order':5} ,
'RespiVentrale':{'low':0.02, 'high':1.5, 'ftype':'butter', 'order':5} ,
'GSR':{'low':None, 'high':3, 'ftype':'butter', 'order':5}
}
## ANALYSES
## job params
import numpy as np
convert_vhdr_params = {
'participants_label': participants_label,
}
random_state = 27
notch_freqs = np.arange(50, 200, 50).tolist()
n_components_decomposition = 10
ica_figure_params = {
'random_state' : random_state,
'notch_freqs' : notch_freqs,
'n_components_decomposition' : n_components_decomposition,
}
preproc_params = {
'participants_label': participants_label,
'notch_freqs' : notch_freqs,
'save_ica_fig': True,
'random_state' : random_state,
'ica_excluded_component': ica_excluded_component,
# 'eeg_chans': eeg_chans ,
'n_components_decomposition' :n_components_decomposition ,
'session_duration':session_duration,
'lowcut':0.05, # lowcut frequency in Hz
'highcut':200, # highcut frequency in Hz
'ftype':'butter',
'order':6,
'reref':reref
}
artifact_params = {
'preproc_params':preproc_params,
'n_deviations':3, # number of deviations (MAD) to the median
'window_size':1.5, # size in seconds of th moving window of rms
'step': 0.5, # step time in second to compute rms windows
'lf':30, # low cutoff frequency to filter signal on which artifacts are detected
'hf':150, # high cutoff frequency to filter signal on which artifacts are detected
'n_chan_artifacted':5 # when this number of channels are bugging at the same time, an artifact is detected
}
artifact_by_chan_params = {
'preproc_params':preproc_params,
'n_deviations':4.5, # number of deviations (MAD) to the median
'window_size':1.5, # size in seconds of th moving window of rms
'step': 0.5, # step time in second to compute rms windows
'lf':30, # low cutoff frequency to filter signal on which artifacts are detected
'hf':150, # high cutoff frequency to filter signal on which artifacts are detected
}
interp_artifact_params = {
'artifact_params':artifact_params,
'freq_min':30., # lowcut of frequency band to compute average power of whole signal to colour white noise before inserting in artifacted zones
'margin_s':0.2, # duration of margins in seconds at the edge of artifact zones to smooth transition between real and patched signal
'seed':None
}
count_artifact_params = {
'artifact_params':artifact_params,
'session_duration':session_duration,
'thresh_prop_time_artifacted':0.3 # trials with more than this proportion of time artifacted will be marked as removable
}
respiration_features_params = {
'inspiration_sign' : '+',
'session_duration':session_duration
}
ecg_params = {
'session_duration':session_duration,
'ecg_inversion' : ecg_inversion,
'thresh':5 # N mads to detect ECG peaks
}
rri_signal_params = {
'ecg_params' : ecg_params,
'max_interval' : 120, # in bpm
'min_interval': 30., # in bpm
'interpolation_kind': 'cubic', # interpolation of RRI signal as cubic or linear to get heart rate signal
}
psd_params = {
'interp_artifact_params':interp_artifact_params,
'lowest_freq':0.1, # lowest frequency interpretable in PSD = at least 5 cycles of this frequency in each Hann window
}
psd_bandpower_params = {
'interp_artifact_params':interp_artifact_params,
'lowest_freq':1, # lowest frequency interpretable in PSD = at least 5 cycles of this frequency in each Hann window
}
psd_baselined_params = {
'psd_bandpower_params':psd_bandpower_params}
bandpower_params = {
'psd_baselined_params':psd_baselined_params,
'fbands':fbands,
'total_band':[psd_bandpower_params['lowest_freq'] , 200], # keep clean freq band (> 200 Hz = noisy)
}
power_at_resp_params = {
'psd_params':psd_params,
'session_duration':session_duration,
'resp_chan':'RespiNasale',
'lowest_freq_psd_resp':0.1, # lowest frequency interpretable in PSD = at least 5 cycles of this frequency in each Hann window
}
coherence_params = {
'interp_artifact_params':interp_artifact_params,
'resp_chan':'RespiNasale',
'lowest_freq_psd_resp':0.15, # lowest frequency interpretable in coherence = at least 5 cycles of this frequency in each window
'lowest_freq_coherence':0.15, # lowest frequency interpretable in coherence = at least 5 cycles of this frequency in each window
'nfft_factor':2, # zero padding = window length * nfft_factor
'n_cycles':4, # at least 'n_cycles' cycles of lowest frequency in each window
'session_duration':session_duration
}
coherence_at_resp_params = {
'coherence_params': coherence_params,
}
power_params = {
'interp_artifact_params':interp_artifact_params,
'chans':['F3','F4','C3','C4','T7','T8','P7','P8','O1','O2','Fz','Pz','Oz'],
'decimate_factor':10, # down sampling power maps with this factor to reduce computation time / storage size
'n_freqs':150, # number of frequency bins
'f_start':4, # lowest frequency of time-frequency maps (logarithm increase then)
'f_stop':150, # highest frequency of time-frequency maps (logarithm increase before)
'c_start':10, # start number of oscillations of wavelets (for the f_start, logarithmically increasing)
'c_stop':30, # stop number of oscillations of wavelets (for the f_stop, logarithmically increasing)
'amplitude_exponent':2 # exponent to transform amplitude into power
}
baseline_params = {'power_params':power_params}
phase_freq_params = {
'power_params':power_params,
'respiration_features_params':respiration_features_params,
'baseline_params':baseline_params,
'n_phase_bins':200, # number of phase bins in phase frequency maps
'segment_ratios':0.4, # ratio inspi / expi standardized
'compress_cycle_modes':[0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.75,0.8,0.9,10] # 10 = 'mean', rest = quantiles
}
phase_freq_concat_params = {
'sub_keys':subject_keys,
'ses_keys':session_keys,
'chans':eeg_chans,
'phase_freq_params':phase_freq_params,
'baseline_mode':'rz_score', # baseline mode = robust zscore (rz_score) or z-score (z_score)
'compress_cycle_modes':phase_freq_params['compress_cycle_modes'],
'max_freq':20 # zoom frequency vector lower that 'max_freq'
}
phase_freq_fig_params = {
'phase_freq_concat_params':phase_freq_concat_params,
'chans':eeg_chans,
'segment_ratios':phase_freq_params['segment_ratios'],
'baseline_mode':phase_freq_concat_params['baseline_mode'],
'compress_cycle_modes':phase_freq_params['compress_cycle_modes'],
'delta_colorlim':0.01, # saturation of time-freq figure colors according to the 'delta_colorlim' to 1 - 'delta_colorlim' range
'compress_subject':'Mean', # Mean or Median or q75
'max_freq':phase_freq_concat_params['max_freq'], # zoom frequency vector
'cmap':'viridis', # colormap of phase freq figures
'quantile_by_subject_fig':0.75, # quantile to compress cycle axis
'cluster_based_pval':0.05 # pvalue threshold to display significant time-freq points via cluster based permutations statistics
}
erp_time_freq_params = {
'baseline_params':baseline_params,
'power_params':power_params,
'half_window_duration':5, # half size of windows in seconds
'compress_cycle_mode':0.75 # quantile to compress cycle axis
}
erp_time_freq_concat_params = {
'sub_keys':subject_keys,
'ses_keys':session_keys,
'erp_time_freq_params':erp_time_freq_params,
'baseline_mode':'rz_score', # baseline method
'center':'expi_time', # respi timestamp at the center of the windowed time-frequency maps
'max_freq':phase_freq_concat_params['max_freq'] # zoom frequency vector below this frequency
}
erp_fig_params = {
'erp_time_freq_concat_params':erp_time_freq_concat_params,
'chans':eeg_chans,
'baseline_mode':erp_time_freq_concat_params['baseline_mode'],
'delta_colorlim':0.01, # saturation of time-freq figure colors according to the 'delta_colorlim' to 1 - 'delta_colorlim' range
'max_freq':erp_time_freq_concat_params['max_freq'], # zoom frequency vector below this frequency
'cmap':'viridis' # colormap used for time freq figures
}
time_phase_fig_params = {
'phase_freq_concat_params':phase_freq_concat_params,
'erp_time_freq_concat_params':erp_time_freq_concat_params,
'chans':eeg_chans,
'segment_ratios':phase_freq_params['segment_ratios'],
'baseline_mode':phase_freq_concat_params['baseline_mode'],
'compress_cycle_modes':phase_freq_params['compress_cycle_modes'],
'delta_colorlim':0.01, # saturation of time-freq figure colors according to the 'delta_colorlim' to 1 - 'delta_colorlim' range
'min_freq':6, # low cutoff frequency to zoom in frequency vector to construct figs
'max_freq':14, # high cutoff frequency to zoom in frequency vector to construct figs
'cmap':'viridis', # colormap used for time freq figures
'cluster_based_pval':0.05, # pvalue threshold to display significant clusters time-freq points via clusted based permutation statistics
'find_cluster_pval':0.04, # pvalue to find significantly large enough clusters of time-freq points
'cluster_tail':-1 # one sided (-1 or +1) or two sided (0)
}
global_just_phase_fig_params = { 'phase_freq_concat_params':phase_freq_concat_params,
'chans':eeg_chans,
'segment_ratios':phase_freq_params['segment_ratios'],
'baseline_mode':phase_freq_concat_params['baseline_mode'],
'compress_cycle_modes':phase_freq_params['compress_cycle_modes'],
'delta_colorlim':0.01, # saturation of time-freq figure colors according to the 'delta_colorlim' to 1 - 'delta_colorlim' range
'min_freq':6,# low cutoff frequency to zoom in frequency vector to construct figs
'max_freq':14, # high cutoff frequency to zoom in frequency vector to construct figs
'cmap':'viridis', # colormap used for time freq figures
'cluster_based_pval':0.05, # pvalue threshold to display significant clusters time-freq points via clusted based permutation statistics
'find_cluster_pval':0.04, # pvalue to find significantly large enough clusters of time-freq points
'cluster_tail':-1 # one sided (-1 or +1) or two sided (0)
}
time_phase_chan_average_params = {
'phase_freq_concat_params':phase_freq_concat_params,
'erp_time_freq_concat_params':erp_time_freq_concat_params,
'chans':eeg_chans,
'segment_ratios':phase_freq_params['segment_ratios'],
'baseline_mode':phase_freq_concat_params['baseline_mode'],
'compress_cycle_modes':phase_freq_params['compress_cycle_modes'],
'delta_colorlim':0.01,# saturation of time-freq figure colors according to the 'delta_colorlim' to 1 - 'delta_colorlim' range
'min_freq':6,# low cutoff frequency to zoom in frequency vector to construct figs
'max_freq':14, # high cutoff frequency to zoom in frequency vector to construct figs
'cmap':'viridis',# colormap used for time freq figures
'cluster_based_pval':0.05,# pvalue threshold to display significant clusters time-freq points via clusted based permutation statistics
'find_cluster_pval':0.05, # pvalue to find significantly large enough clusters of time-freq points
'cluster_tail':0 # one sided (-1 or +1) or two sided (0)
}
eda_params = {
'session_duration':session_duration
}
rsa_params = {
'respiration_features_params':respiration_features_params,
'ecg_params':ecg_params,
'n_phase_bins':100, # number of phase bins
}
stai_longform_params = {
'mean_etat':35.4, # mean expected state anxienty in global population
'mean_trait':34.8, # mean expected trait anxienty in global population
'sd_etat':10.5, # sd expected state anxienty in global population
'sd_trait':9.2 # sd expected trait anxienty in global population
}
maia_params = {
'reverse':{1:'+',2:'+',3:'+',4:'+',5:'-',6:'-',7:'-',8:'-',9:'-',10 :'+',
11:'+', 12:'+', 13:'+', 14:'+',15:'+',16:'+', 17:'+', 18:'+', 19:'+',20:'+',
21:'+', 22:'+', 23:'+', 24:'+',25:'+',26:'+', 27:'+', 28:'+', 29:'+',30:'+',
31:'+', 32:'+'}, # reverse questions (5 - score) if '-'
'items':{ # grouping of questions and their label
'noticing':[1,2,3,4],
'not_distracting':[5,6,7],
'not_worrying':[8,9,10],
'attention_regulation':[11,12,13,14,15,16,17],
'emotional_awareness':[18,19,20,21,22],
'self_regulation':[23,24,25,26],
'body_listening':[27,28,29],
'trusting':[30,31,32],
}
}
relaxation_params = {}
emotions_params = {}
oas_params = {}
bmrq_params = {}
cycle_signal_params = {
'interp_artifact_params':interp_artifact_params,
'respiration_features_params':respiration_features_params,
'n_phase_bins':1000, # number of phase bins
'segment_ratios':0.4, # standardized ratio inspi / expi
'chans':eeg_chans,
'session_duration':session_duration
}
cycle_signal_modulation_params = {
'cycle_signal_params':cycle_signal_params,
}
erp_signal_params = {
'interp_artifact_params':interp_artifact_params,
'respiration_features_params':respiration_features_params,
'chans':eeg_chans,
'session_duration':session_duration,
'window_size_secs':10,
'start_window_size_before_transition_secs':5,
}
concat_erp_signal_params = {
'erp_signal_params':erp_signal_params
}
# Global concat of dataframes jobs params
# odor_rating_params = {'subject_keys':subject_keys,
# 'date_of_data_generation':'06-06-2023',
# 'rename_cols':{
# 'odeur_name':'Odor_Name',
# 'odeur_label':'Odor_Label',
# 'appréciation_absolue_normalisée':'Absolute Hedonicity',
# 'appréciation_relative_normalisée':'Hedonicity',
# 'intensité_émotionnelle_relative_normalisée':'Emotional Intensity',
# 'familiarité_relative_normalisée':'Familiarity',
# 'intensité_relative_normalisée':'Stimulus Intensity',
# 'evocation_relative_normalisée':'Memory Evocation'}
# }
eda_concat_params = {'run_keys':run_keys,
'eda_params':eda_params
}
hrv_concat_params = {'run_keys':run_keys,
'ecg_params':ecg_params,
}
rsa_concat_params = {'run_keys':run_keys,
'rsa_params':rsa_params,
}
bandpower_concat_params = {'run_keys':stim_keys,
'bandpower_params':bandpower_params
}
coherence_at_resp_concat_params = {'run_keys':run_keys,
'coherence_params':coherence_params
}
power_at_resp_concat_params = {'run_keys':run_keys,
'power_at_resp_params':power_at_resp_params
}
resp_features_concat_params = {'run_keys':run_keys,
'respiration_features_params':respiration_features_params
}
relaxation_concat_params = {'run_keys':subject_keys,
'relaxation_params':relaxation_params
}
maia_concat_params = {'subject_keys':subject_keys,
'maia_params':maia_params
}
# stai_long_concat_params = {'run_keys':run_keys,
# 'stai_longform_params':stai_longform_params
# }
modulation_cycle_signal_concat_params = {'run_keys':run_keys,
'cycle_signal_modulation_params':cycle_signal_modulation_params
}
oas_concat_params = {'run_keys':subject_keys,
'oas_params':oas_params
}
bmrq_concat_params = {'run_keys':subject_keys,
'bmrq_params':bmrq_params
}
cycle_signal_frames_params = {
'cycle_signal_params':cycle_signal_params,
'chan_line_signal':'Cz', # eeg chan for example line signal
'resp_chan':'resp_nose' # respi chan for example line signal
}
video_params = {'step':5, # down sampling frames by this factor
'video_duration':30 # total video duration in seconds
}
slope_params = {
'power_params':power_params
}
deform_slope_params = {
'slope_params':slope_params,
'respiration_features_params':respiration_features_params,
'n_phase_bins':1000, # number of phase bins
'segment_ratios':0.4, # standardized ratio inspi / expi
}
individual_slope_fig_params = {
'deform_slope_params':deform_slope_params
}