-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
195 lines (162 loc) · 6.55 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
import torch.optim as optim
import os
from monitoring import log_info
import logging
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 랜덤 시드 고정
torch.manual_seed(2024)
if device == 'cuda':
torch.cuda.manual_seed_all(2024)
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.keep_prob = 0.5
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
)
self.fc1 = nn.Linear(4 * 4 * 128, 625, bias=True)
nn.init.xavier_uniform_(self.fc1.weight)
self.layer4 = nn.Sequential(
self.fc1,
nn.ReLU(),
nn.Dropout(p=1 - self.keep_prob)
)
self.fc2 = nn.Linear(625, 10, bias=True)
nn.init.xavier_uniform_(self.fc2.weight)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out) # 수정된 부분
out = self.layer3(out)
out = out.view(-1, 4 * 4 * 128)
out = self.layer4(out)
out = self.fc2(out)
return out
def load_model(model_path='saved_model.pth'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CNNModel().to(device)
if not os.path.exists(model_path):
logging.warning(f"Model file not found at {model_path}. Initializing a new model.")
torch.save(model.state_dict(), model_path)
logging.info(f"New model saved to {model_path}")
else:
try:
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict)
logging.info(f"Model loaded successfully from {model_path}")
except Exception as e:
logging.error(f"Error loading model from {model_path}: {str(e)}")
logging.warning("Initializing a new model.")
torch.save(model.state_dict(), model_path)
logging.info(f"New model saved to {model_path}")
model.eval()
return model
def predict(model, input_data_list):
predictions = []
with torch.no_grad():
for idx, input_data in enumerate(input_data_list):
input_tensor = torch.from_numpy(input_data).float().to(device)
input_tensor = input_tensor.unsqueeze(0) # 배치 차원 추가
outputs = model(input_tensor)
_, predicted = torch.max(outputs.data, 1)
predictions.append(predicted.item())
return predictions
def train_and_evaluate_model():
learning_rate = 0.001
training_epochs = 15
batch_size = 100
# 데이터 증강을 포함한 변환 정의
train_transform = transforms.Compose([
transforms.RandomRotation(10), # ±10도 회전
transforms.RandomAffine(0, shear=10, scale=(0.8,1.2)), # 전단 변환 및 스케일 조정
transforms.RandomHorizontalFlip(), # 좌우 반전
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# MNIST 데이터셋 로드
full_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=test_transform)
# 데이터셋 분할 (80% 학습, 20% 검증)
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
model = CNNModel().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
best_val_accuracy = 0.0
for epoch in range(training_epochs):
model.train()
avg_cost = 0
for X, Y in train_loader:
X = X.to(device)
Y = Y.to(device)
optimizer.zero_grad()
hypothesis = model(X)
cost = criterion(hypothesis, Y)
cost.backward()
optimizer.step()
avg_cost += cost / len(train_loader)
print(f'[Epoch: {epoch + 1:>4}] cost = {avg_cost:.9f}')
# 검증 단계
model.eval()
val_correct = 0
val_total = 0
with torch.no_grad():
for images, labels in val_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
val_accuracy = 100 * val_correct / val_total
print(f'Validation Accuracy: {val_accuracy:.2f}%')
# 가장 좋은 모델 저장
if val_accuracy > best_val_accuracy:
best_val_accuracy = val_accuracy
torch.save(model.state_dict(), 'saved_model.pth')
print(f'Best model saved with Validation Accuracy: {val_accuracy:.2f}%')
print("Training complete.")
# 테스트 데이터로 모델 평가
test_accuracy = evaluate_model(model, test_loader)
print(f'Test Accuracy: {test_accuracy:.2f}%')
def evaluate_model(model, dataloader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in dataloader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
accuracy = 100 * correct / total
return accuracy
if __name__ == "__main__":
train_and_evaluate_model()