forked from Aadharc/Visual_Thermal_Image_Fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
405 lines (348 loc) · 18.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import torch
from utils import save_checkpoint, load_checkpoint, save_some_examples, save_generated_image
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import wandb
# import config
# from dataset import MapDataset
from Dataset2 import CustomDataSet
from GenAttn import Generator_attn, Gen
from torch.optim.lr_scheduler import CosineAnnealingLR
from Discriminator import Discriminator
# from Discriminator_attn import Discriminator_attn
from torch.utils.data import DataLoader, Subset, RandomSampler
from tqdm import tqdm
import torchvision.transforms as transforms
from torchvision.utils import save_image
from ssim import SSIM
from loss import calculate_ssim
from Metrics import calculate_metrics
import matplotlib.pyplot as plt
import argparse
# torch.backends.cudnn.benchmark = False
torch.backends.cudnn.benchmark = True
# Initialize wandb project
wandb.init(project = "Fusion")
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to use for training (default: cuda if available else cpu)")
parser.add_argument('--train_dir_vis', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/Vis/train/img',
help = "Path to the training directory for visual modality images")
parser.add_argument('--test_dir_vis', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/Vis/val/img',
help = "Path to the test data directory for visual modality images")
parser.add_argument('--train_dir_ir', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/IR/train/img',
help = "Path to the training directory for thermal modality images")
parser.add_argument('--test_dir_ir', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/IR/val/img',
help = "Path to the test data directory for thermal modality images")
parser.add_argument('--train_dir_vis_lbl', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/Vis/train/labels',
help = "Path to the training directory for visual modality images labels")
parser.add_argument('--test_dir_vis_lbl', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/Vis/val/label',
help = "Path to the test data directory for visual modality images labels")
parser.add_argument('--train_dir_ir_lbl', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed/DataLabels/IR/train/labels',
help = "Path to the training directory for thermal modality images labels")
parser.add_argument('--test_dir_ir_lbl', type=str, default='/mnt/mass_storage/gdrive_backup/WiSAR_dataset/AFSL_Dataset/Full_Dataset_Annotated/DO_NOT_MODIFY_Chris_Reviewed/Aadhar_Reviewed//DataLabels/IR/val/labels',
help = "Path to the test data directory for thermal modality images labels")
parser.add_argument("--learning_rate", type=float, default=2e-4,
help="Learning rate for the optimizer (default: 2e-4)")
parser.add_argument("--batch_size", type=int, default=8,
help="Batch size for the training (default: 8)")
parser.add_argument("--num_workers", type=int, default=2,
help="Number of workers for the data loader (default: 2)")
parser.add_argument("--image_size", type=int, default=(512, 1024),
help="Image size (default: (512, 1024)")
parser.add_argument("--channels_img", type=int, default=3,
help="Number of channels in the input images (default: 3)")
parser.add_argument("--l1_lambda", type=float, default=100,
help="Weight for L1 loss (default: 100)")
parser.add_argument("--alpha", type=float, default=5,
help="Weight for the adversarial loss for the generator (default: 5)")
parser.add_argument("--beta", type=float, default=10,
help="Weight for the KL loss for the generator (default: 10)")
parser.add_argument("--num_epochs", type=int, default=12,
help="Number of epochs for training (default: 12)")
parser.add_argument("--load_model", action="store_true", default = False,
help="Load a saved model for training (default: False)")
parser.add_argument("--save_model", action="store_true", default = True,
help="Save the trained model (default: True)")
parser.add_argument("--checkpoint_disc_ir", type=str, default="disc_ir_maskbwself.pth.tar",
help="Checkpoint file for the discriminator for infrared modality (default: disc_ir_maskbwself.pth.tar)")
parser.add_argument("--checkpoint_disc_vis", type=str, default="disc_vis_maskbwself.pth.tar",
help="Checkpoint file for the discriminator for visual modality (default: disc_vis_maskbwself.pth.tar)")
parser.add_argument("--checkpoint_gen", type=str, default="gen_no_attn.pth.tar",
help="Checkpoint file for the generator (default: gen_no_attn.pth.tar)")
args = parser.parse_args()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# DEVICE = "cpu"
train_dir_vis = args.train_dir_vis
test_dir_vis = args.test_dir_vis
train_dir_ir = args.train_dir_ir
test_dir_ir = args.test_dir_ir
train_dir_vis_lbl = args.train_dir_vis_lbl
test_dir_vis_lbl = args.test_dir_vis_lbl
train_dir_ir_lbl = args.train_dir_ir_lbl
test_dir_ir_lbl = args.test_dir_ir_lbl
learning_rate = args.learning_rate
batch_size = args.batch_size
num_workers = args.num_workers
image_size = args.image_size
channels_img = args.channels_img
l1_lambda = args.l1_lambda
alpha = args.alpha
beta = args.beta
num_epochs = args.num_epochs
load_model = args.load_model
save_model = args.save_model
checkpoint_disc_ir = args.checkpoint_disc_ir
checkpoint_disc_vis = args.checkpoint_disc_vis
checkpoint_gen = args.checkpoint_gen
# saving config to wandb
wandb.config.learning_rate = learning_rate
wandb.config.batch_size = batch_size
wandb.config.num_workers = num_workers
wandb.config.image_size = image_size
channels_img = channels_img
wandb.config.l1_lambda = l1_lambda
wandb.config.alpha = alpha
wandb.config.beta = beta
wandb.config.num_epochs = num_epochs
def train_fn(disc_ir, disc_vis, gen, train_loader, val_loader, opt_disc_ir, opt_disc_vis, opt_gen, l1_loss, bce, ssim, KL, g_scaler, d_scaler_ir,d_scaler_vis):
train_loop = tqdm(train_loader, leave=True)
D_loss_ir_train = 0
D_loss_vis_train = 0
G_loss_train = 0
gen.train()
disc_ir.train()
disc_vis.train()
for idx, batch in enumerate(train_loop):
# Training
x = batch['image_vis']
y = batch['image_ir']
# a = batch['target_vis']
# b = batch['target_ir']
x = x.to(DEVICE)
y = y.to(DEVICE)
# Train Discriminator
with torch.cuda.amp.autocast():
y_fake, attn1, attn2, l_a = gen(x, y)
x_a = x * attn1
y_a = y * attn2
to_PIL = transforms.ToPILImage()
D_real_ir = disc_ir(y, y)
D_real_loss_ir = bce(D_real_ir, torch.ones_like(D_real_ir))
D_fake_ir = disc_ir(y, y_fake.detach())
D_fake_loss_ir = bce(D_fake_ir, torch.zeros_like(D_fake_ir))
D_loss_ir = (D_real_loss_ir + D_fake_loss_ir) / 2
D_loss_ir_train += D_loss_ir.item()
D_real_vis = disc_vis(x, x)
D_real_loss_vis = bce(D_real_vis, torch.ones_like(D_real_vis))
D_fake_vis = disc_vis(x, y_fake.detach())
D_fake_loss_vis = bce(D_fake_vis, torch.zeros_like(D_fake_vis))
D_loss_vis = (D_real_loss_vis + D_fake_loss_vis) / 2
D_loss_vis_train += D_loss_vis.item()
# weightage preference for discriminator based on which modality has more number of humans
# if torch.sum(a) < torch.sum(b):
# D_loss_ir = 50 * D_loss_ir
# if torch.sum(a) > torch.sum(b):
# D_loss_vis = 50 * D_loss_vis
disc_ir.zero_grad()
disc_vis.zero_grad()
d_scaler_ir.scale(D_loss_ir).backward()
d_scaler_vis.scale(D_loss_vis).backward()
d_scaler_ir.step(opt_disc_ir)
d_scaler_vis.step(opt_disc_vis)
d_scaler_ir.update()
d_scaler_vis.update()
# Train generator
with torch.cuda.amp.autocast():
D_fake_ir = disc_ir(y, y_fake)
D_fake_vis = disc_vis(x, y_fake)
# print(torch.sum(a))
# print(torch.sum(b))
# print(max(torch.sum(b),torch.sum(a)))
# detection_loss = abs(num_det - max(torch.sum(a), torch.sum(b)))
G_fake_loss_ir = bce(D_fake_ir, torch.ones_like(D_fake_ir))
G_fake_loss_vis = bce(D_fake_vis, torch.ones_like(D_fake_vis))
# L1 = (l1_loss(y_fake, y) + l1_loss(y_fake, x) - l1_loss(x_a.to(config.DEVICE), y_a.to(config.DEVICE))) * config.L1_LAMBDA
L1 = (l1_loss(y_fake, y) + l1_loss(y_fake, x)) * l1_lambda
# triplet_loss = F.triplet_margin_loss(y_fake, y_a, x_a)
cross = nn.CrossEntropyLoss()
# attn_loss = (cross(y_fake * attn2, y * attn2) + cross(y_fake * attn1, x * attn1)) * 10
attn_contrastive_loss = l_a
# KL1 = KL(x_a.clone(), y_a.clone())
# G_loss = G_fake_loss_ir + G_fake_loss_vis + L1 + attn_contrastive_loss
G_loss = G_fake_loss_ir + G_fake_loss_vis + L1 + beta * (KL(y_fake.clone(),y.clone()) + KL(y_fake.clone(),x.clone())) + attn_contrastive_loss
G_loss_train += G_loss.item()
opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_gen)
g_scaler.update()
G_loss_train /= len(train_loader)
D_loss_ir_train /= len(train_loader)
D_loss_vis_train /= len(train_loader)
if idx % 10 == 0:
train_loop.set_postfix(
D_real_ir=torch.sigmoid(D_real_ir).mean().item(),
D_fake_ir=torch.sigmoid(D_fake_ir).mean().item(),
D_real_vis=torch.sigmoid(D_real_vis).mean().item(),
D_fake_vis=torch.sigmoid(D_fake_vis).mean().item(),
# G_Loss = torch.tensor(G_loss).clone().detach().mean().item(),
)
gen.eval()
disc_ir.eval()
disc_vis.eval()
val_loop = tqdm(val_loader, leave=True)
with torch.no_grad():
for idx, batch in enumerate(val_loop):
# Validation
x = batch['image_vis']
y = batch['image_ir']
# a = batch['target_vis']
# b = batch['target_ir']
x = x.to(DEVICE)
y = y.to(DEVICE)
# Discriminator
with torch.cuda.amp.autocast():
y_fake, attn1, attn2, l_a = gen(x, y)
x_a = x * attn1
y_a = y * attn2
to_PIL = transforms.ToPILImage()
D_real_ir_val = disc_ir(y, y)
D_real_loss_ir = bce(D_real_ir, torch.ones_like(D_real_ir))
D_fake_ir_val = disc_ir(y, y_fake.detach())
D_fake_loss_ir = bce(D_fake_ir, torch.zeros_like(D_fake_ir))
D_loss_ir = (D_real_loss_ir + D_fake_loss_ir) / 2
D_real_vis_val = disc_vis(x, x)
D_real_loss_vis = bce(D_real_vis, torch.ones_like(D_real_vis))
D_fake_vis_val = disc_vis(x, y_fake.detach())
D_fake_loss_vis = bce(D_fake_vis, torch.zeros_like(D_fake_vis))
D_loss_vis = (D_real_loss_vis + D_fake_loss_vis) / 2
# weightage preference for discriminator based on which modality has more number of humans
# if torch.sum(a) < torch.sum(b):
# D_loss_ir = 5 * D_loss_ir
# if torch.sum(a) > torch.sum(b):
# D_loss_vis = 5 * D_loss_vis
# generator
with torch.cuda.amp.autocast():
D_fake_ir = disc_ir(y, y_fake)
D_fake_vis = disc_vis(x, y_fake)
G_fake_loss_ir = bce(D_fake_ir, torch.ones_like(D_fake_ir))
G_fake_loss_vis = bce(D_fake_vis, torch.ones_like(D_fake_vis))
# L1 = (l1_loss(y_fake, y) + l1_loss(y_fake, x) - l1_loss(x_a.to(config.DEVICE), y_a.to(config.DEVICE))) * config.L1_LAMBDA
L1 = (l1_loss(y_fake, y) + l1_loss(y_fake, x)) * l1_lambda
cross = nn.CrossEntropyLoss()
# attn_loss = (cross(y_fake * attn2, y * attn2) + cross(y_fake * attn1, x * attn1)) * 10
attn_contrastive_loss = l_a
# triplet_loss = F.triplet_margin_loss(y_fake, y_a, x_a)
# KL1 = KL(x_a.clone(), y_a.clone())
# G_loss = G_fake_loss_ir + G_fake_loss_vis + L1 + attn_contrastive_loss
G_loss = G_fake_loss_ir + G_fake_loss_vis + L1 + beta * (KL(y_fake.clone(),y.clone()) + KL(y_fake.clone(),x.clone())) + attn_contrastive_loss
if idx % 10 == 0:
val_loop.set_postfix(
D_real_ir_val=torch.sigmoid(D_real_ir).mean().item(),
D_fake_ir_val=torch.sigmoid(D_fake_ir).mean().item(),
D_real_vis_val=torch.sigmoid(D_real_vis).mean().item(),
D_fake_vis_val=torch.sigmoid(D_fake_vis).mean().item(),
G_Loss_val = torch.tensor(G_loss).clone().detach().mean().item(),
)
# Logging loss values for training
# wandb.log({"Generator Loss Val": G_loss_val.item(), "Discriminator IR Loss Val": D_loss_ir.item(), "Discriminator VIS Loss Val": D_loss_vis.item()})
return G_loss_train, D_loss_vis_train, D_loss_ir_train
def main():
# masked_feat = MaskedFeatures(in_chan = 3, features = 8)
disc_ir = Discriminator(in_channels=3).to(DEVICE)
disc_vis = Discriminator(in_channels=3).to(DEVICE)
# Log model and gradients
wandb.watch(disc_ir)
wandb.watch(disc_vis)
# gen = Generator(in_channels=64, features=64).to(config.DEVICE)
# gen = Generator_attn(3,32).to(DEVICE)
# Log model and gradients
gen = Gen().to(DEVICE)
wandb.watch(gen)
opt_disc_ir = optim.Adam(disc_ir.parameters(), lr=learning_rate, betas=(0.9, 0.999),)
opt_disc_vis = optim.Adam(disc_vis.parameters(), lr=learning_rate, betas=(0.9, 0.999),)
opt_gen = optim.Adam(gen.parameters(), lr=learning_rate, betas=(0.9, 0.999))
scheduler = CosineAnnealingLR(opt_gen,
T_max = 32, # Maximum number of iterations.
eta_min = 1e-4) # Minimum learning rate.
transform = transforms.Compose([transforms.Resize((256,512),transforms.InterpolationMode.BILINEAR), transforms.ToTensor()])
# transform = transforms.Compose([transforms.Resize((512,512),transforms.InterpolationMode.BILINEAR)])
# transform = transforms.Compose([transforms.ToPILImage(), transforms.Resize((512,512),transforms.InterpolationMode.BILINEAR), transforms.ToTensor()])
BCE = nn.BCEWithLogitsLoss()
L1_LOSS = nn.L1Loss()
ssim = SSIM()
KL = nn.KLDivLoss()
# if config.LOAD_MODEL:
# load_checkpoint(
# config.CHECKPOINT_GEN, gen, opt_gen, config.LEARNING_RATE,
# )
# load_checkpoint(
# config.CHECKPOINT_DISC, disc, opt_disc, config.LEARNING_RATE,
# )
# train_dataset = CustomDataSet(train_dir_vis, train_dir_ir, train_dir_vis_lbl, train_dir_ir_lbl, transform= transform)
# train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle=True, num_workers=num_workers)
# Define your dataset as before
# dataset = CustomDataSet(train_dir_vis, train_dir_ir, train_dir_vis_lbl, train_dir_ir_lbl, transform=transform)
dataset = CustomDataSet(train_dir_vis, train_dir_ir, transform=transform) #used Dataset2.py for evaluation plots
# Calculate the size of the training set and validation set
train_size = int(len(dataset) * 0.8) # 80% for training
val_size = len(dataset) - train_size # Remaining 20% for validation
# Create random samplers for training and validation sets
train_sampler = RandomSampler(dataset, num_samples=train_size, replacement=True)
val_sampler = RandomSampler(dataset, num_samples=val_size, replacement=True)
# Create data loaders for training and validation sets
train_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=train_sampler,
num_workers=num_workers,
)
val_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=val_sampler,
num_workers=num_workers,
)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler_ir = torch.cuda.amp.GradScaler()
d_scaler_vis = torch.cuda.amp.GradScaler()
# test_dataset = CustomDataSet(test_dir_vis, test_dir_ir, test_dir_vis_lbl, test_dir_ir_lbl, transform)
test_dataset = CustomDataSet(test_dir_vis, test_dir_ir, transform)
test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle=True)
test_loader1 = DataLoader(test_dataset, batch_size = 1, shuffle=False)
# initializing lists to visualize metrics
min_psnr_vis = []
max_psnr_vis = []
mean_psnr_vis = []
min_ssim_vis = []
max_ssim_vis = []
mean_ssim_vis = []
min_nmi_vis = []
max_nmi_vis = []
mean_nmi_vis = []
min_psnr_ir = []
max_psnr_ir = []
mean_psnr_ir = []
min_ssim_ir = []
max_ssim_ir = []
mean_ssim_ir = []
min_nmi_ir = []
max_nmi_ir = []
mean_nmi_ir = []
for epoch in range(num_epochs):
p,q,r = train_fn(
disc_ir, disc_vis, gen, train_loader, val_loader, opt_disc_ir, opt_disc_vis, opt_gen, L1_LOSS, BCE, ssim, KL, g_scaler, d_scaler_ir,d_scaler_vis
)
tqdm.write(f"Epoch {epoch} lr {learning_rate} - Gen Loss: {p:.4f} - D1 Loss: {q:.4f} - D2 Loss: {r:.4f} ")
# Logging loss values for training
wandb.log({"Generator Loss": p, "Discriminator IR Loss": r, "Discriminator VIS Loss": q, "Learning Rate" : learning_rate})
if save_model and epoch % 2 == 0:
save_checkpoint(gen, opt_gen, filename= f"gen_No_KL.pth.tar")
# save_checkpoint(disc_ir, opt_disc_ir, filename=checkpoint_disc_ir)
# save_checkpoint(disc_vis, opt_disc_vis, filename=checkpoint_disc_vis)
print(f"saving examples at epoch {epoch}")
save_some_examples(gen, test_loader, epoch, folder="dump20", device = DEVICE) #label3 512x1024 with no clamp on masks and yolov5
if __name__ == "__main__":
main()