Skip to content

TracyRage/hb_database

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Init conda environment

  1. Download and install Anaconda, set Bioconda as well.

  2. From ~/hb_database/hb_database_env.txt create the working environment.

     conda env create -file hb_database_env.txt
    
  3. Init conda environment:

     conda activate hb_database
    

Install local databases

Create local SwissProt database

Download SwissProt uniprot_sprot.fa and create a local database.

	makeblastdb  \
	-in ~/db_uniprot/uniprot_sprot.fasta \
	-out ~/db_uniprot/ \
	-parse_seqids \
	-dbtype prot

Create local Cdd database for RPS-Blast

Download Cdd database.

	makeprofiledb \
	-title Cdd \
	-in Cdd.pn \
	-out db_cdd \
	-threshold 9.82 \
	-scale 100.0 \
	-dbtype rps \
	-index true

Create Pfam local database

Download Pfam-A.hmm & Pfam-A.hmm.dat and create a local Pfam database.

	hmmpress -f data/seqs/db_pfam/Pfam-A.hmm

Create local ghostKoala database

Check here for set up steps.


Create database

Get sequences of curated alpha subunits

Get from NCBI the .fasta file for the curated alpha subunits.

Only one alpha subunit per enzyme of interest.

	python 01_fetching_aa_seqs.py  \
	--input data/seqs/01_list_alpha_subunits.csv \
	--email <insert your email>

Input table example:

enzyme alpha_subunits accession
Xylene_monooxygenase xylM NP_542887
Toluene_dioxygenase todC1 BAC05504
Toluene_2-monooxygenase tomA1 AAK07411.1

Do not use symbols such as (",", "/", etc.) in your input table. It may cause various parsing failures.

Get Blast results for each gene sequence

02_alpha_subunits_aa_sequences splits your multiple sequence 02_alpha_subunits_aa_sequences.fa file, and BLASTP each singular fasta file.

	python 02_do_blast.py \
	--input analyses/02_alpha_subunits_aa_sequences.fa  \
	--database data/seqs/db_uniprot/swiss_prot.fa

Check in the output xml files last/trailing entries; sometimes you can get eukaryotic genes

Get Blast hits (interest, outgroup, total)

Parse .xml files and get UniProt reviewed and unreviewed (outgroup) sequences.

	python 03_get_blast_hits.py \
	--xml_in analyses/blast_outputs/separated_blast/

Nota Bene:

  • separated_hits/interest (SwissProt reviewed sequences)
  • separated_hits/outgroup (outgroup sequences)
  • separated_hits/merged (reviewed + outgroup)

Get fasta file for each Blast hit

Get .fasta file for each hit.

	python 04_get_uniprot_fa.py \
	--input analyses/blast_outputs/separated_hits/

Get RPS-Blast (Cdd, Ko, Pfam) hits

05_do_rps_blast.py uses .fa files in blast_outputs/separated_hits and outputs .cdd, .ko and .pfam tables.

	python 05_do_rps_blast.py \
	--input_fa analyses/blast_outputs/separated_hits/ \
	--db_cdd data/seqs/db_cdd/db_cdd \
	--evalue 0.01 \
	--db_pfam data/seqs/db_pfam/ \
	--db_ko data/seqs/db_ko/profiles/ \
	--ko_list data/seqs/db_ko/ko_list \
	--ko_config data/seqs/db_ko/config.yml

To enhance the performance of Ko annotation check .yml file.

Generate annotation tables for each alpha subunit

Merge .cdd, .pfam, .ko tables in blast_outputs/separated_hits.

	python 06_create_annotated_table.py /
	--fasta_input analyses/blast_outputs/separated_hits/

Output example (ABE37059.1_Paraburkholderia_xenovorans_LB400.tsv):

UniProt Cdd Ko Pfam
Q52438 CDD:239550 K08689 PF00355.27
Q53122 CDD:239550 K08689 PF00355.27

Access UniProt API and get sequences based on keyword and perform filtering

Perform UniProt direct query.

Keyword implies exact gene name. Filtering implies deleting uncultured and fragments sequences.

	python 07_do_sw_query.py \
	--input_file data/seqs/01_list_alpha_subunits.csv

Get RPS-Blast (Cdd, Ko, Pfam) hits (2)

Get annotation for initial curated sequences (NBCI) analyses/blast_outputs/separated_fasta/ and SwissProt query sequences analyses/sp_query/

	python 05_do_rps_blast.py \
	-in analyses/blast_outputs/separated_fasta/ \
	-cdd data/seqs/db_cdd/db_cdd \
	-e 0.01 \
	-pfam data/seqs/db_pfam/ \
	-ko data/seqs/db_ko/profiles/ \
	-kl data/seqs/db_ko/ko_list \
	-kc data/seqs/db_ko/config.yml

	python 06_create_annotated_table.py /
	--fasta_input analyses/blast_outputs/separated_fasta/

	---------------------------------------------

	python 05_do_rps_blast.py \
	-in analyses/sp_query/ \
	-cdd data/seqs/db_cdd/db_cdd \
	-e 0.01 \
	-pfam data/seqs/db_pfam/ \
	-ko data/seqs/db_ko/profiles/ \
	-kl data/seqs/db_ko/ko_list \
	-kc data/seqs/db_ko/config.yml

	python 06_create_annotated_table.py /
	-in analyses/sp_query/

Format all the analyzed fasta files for further processing

	python 08_do_format_seqs.py \
	--input_fa analyses/sp_query/

	python 08_do_format_seqs.py \
	--input_fa analyses/blast_outputs/

I would recommend to put .fa of analyses/sp_query/ in a separate directory

Generate a table with all the collected fasta files and number of sequences within

Keys: accession (NCBI accession #); sp_query (List of fasta files gathered after direct UniProt keyword query); filtered# (Number of SwissProt query sequences after filtration of fragments, etc.); unfiltered# (Number of SwissProt raw keyword query sequences); ncbi_ref (Manually curated NCBI files); sp_ref (Files resulted from RPS Blast); sp_ref# (Number of sequences in each RPS Blast file).

	python 09_prep_phylo.py \
	--initial_table data/seqs/01_list_alpha_subunits.csv \
	--ncbi_fa analyses/blast_outputs/separated_fasta/ \
	--sp_blast analyses/blast_outputs/separated_hits/merged/ \
	--sp_query analyses/sp_query/

Output: analyses/annotated_table.tsv

Conclusion

  • Curated NCBI sequences can be found at analyses/blast_outputs/separated_fasta/
  • SwissProt review sequences can be found at analyses/blast_outputs/separated_hits/relevant/
  • SwissProt outgroup sequences can be found at analyses/blast_outputs/separated_hits/outgroup/
  • SwissProt outgroup + reviewed sequences can be found at analyses/blast_outputs/separated_hits/merged/
  • SwissProt keyword query sequences (filtered) can be found at analyses/sp_query/*.filtered
  • Table with fasta files to be used further in the phylogenetic analyses analyses/annotated_table.tsv

Phylogenetic analysis

Prepare working environment

Create analyses/phylo directory and put there merged .fasta files from analyses/blast_outputs/separated_fasta/, analyses/blast_outputs/separated_hits and analyses/sp_query/.

	python 10_phylo_env.py \
	--input_table analyses/annotated_table/annotated_table.tsv

Perform alignment, trimming and generate phylogenetic tree

Perform multiple alignment with MUSCLE. Use Trimal for alignment trimming (gap threshold of 0.05). Use IQ-TREE for phylogenetic tree rendering. Use UFboot option for bootstrapping.

In order to get accurate phylogenetic tree. Instead of GAMMA method use LG+R7 (default method in 11_generate_best_tree)

	python 11_generate_best_tree.py \
	--input analyses/phylo

(Optional) Get references for each curate alpha subunits

Left join references titles for each alpha subunit in analyses/annotated_table.tsv

	python 12_get_references.py \
	--input_table analyses/annotated_table.tsv \
	--email <insert your email>

Generate report

Annotate phylogenetic trees

In order to annotate phylogenetic trees in analyses/phylo use R & ggtree (check the R script in /phylo/*.ipynb).

Use for jupyter notebook for .ipynb

Create pipeline flow chart

Check /flow_charts for flow chart creation.

Final reports

Check /analyses/phylo/*.Rmd for rendering final reports.


Final results

Final files can be accessed in analyses/phylo/*. Final .html reports can be accessed in reports/*.

About

Hydrocarbon database pipeline

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published