-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
147 lines (96 loc) · 4.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from torch import nn
import torch
import random
# Most of this code was written by Ben Trevett
# TODO add license for this
# (https://github.com/bentrevett/pytorch-seq2seq/blob/master/1%20-%20Sequence%20to%20Sequence%20Learning%20with%20Neural%20Networks.ipynb)
class Encoder(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super().__init__()
self.hid_dim = hid_dim
self.n_layers = n_layers
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
# src = [src sent len, batch size]
embedded = self.dropout(self.embedding(src))
# embedded = [src sent len, batch size, emb dim]
outputs, (hidden, cell) = self.rnn(embedded)
# outputs = [src sent len, batch size, hid dim * n directions]
# hidden = [n layers * n directions, batch size, hid dim]
# cell = [n layers * n directions, batch size, hid dim]
# outputs are always from the top hidden layer
return hidden, cell
class Decoder(nn.Module):
def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):
super().__init__()
self.output_dim = output_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.embedding = nn.Embedding(output_dim, emb_dim)
self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)
self.out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, input, hidden, cell):
# input = [batch size]
# hidden = [n layers * n directions, batch size, hid dim]
# cell = [n layers * n directions, batch size, hid dim]
# n directions in the decoder will both always be 1, therefore:
# hidden = [n layers, batch size, hid dim]
# context = [n layers, batch size, hid dim]
input = input.unsqueeze(0)
# input = [1, batch size]
embedded = self.dropout(self.embedding(input))
# embedded = [1, batch size, emb dim]
output, (hidden, cell) = self.rnn(embedded, (hidden, cell))
# output = [sent len, batch size, hid dim * n directions]
# hidden = [n layers * n directions, batch size, hid dim]
# cell = [n layers * n directions, batch size, hid dim]
# sent len and n directions will always be 1 in the decoder, therefore:
# output = [1, batch size, hid dim]
# hidden = [n layers, batch size, hid dim]
# cell = [n layers, batch size, hid dim]
prediction = self.out(output.squeeze(0))
# prediction = [batch size, output dim]
return prediction, hidden, cell
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
assert encoder.hid_dim == decoder.hid_dim, \
"Hidden dimensions of encoder and decoder must be equal!"
assert encoder.n_layers == decoder.n_layers, \
"Encoder and decoder must have equal number of layers!"
def forward(self, src, trg, teacher_forcing_ratio=0.5):
# src = [src sent len, batch size]
# trg = [trg sent len, batch size]
# teacher_forcing_ratio is probability to use teacher forcing
# e.g. if teacher_forcing_ratio is 0.75 we use ground-truth inputs 75% of
# the time
batch_size = trg.shape[1]
max_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
# tensor to store decoder outputs
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
# last hidden state of the encoder is used as the initial hidden state of
# the decoder
hidden, cell = self.encoder(src)
# first input to the decoder is the <sos> tokens
input = trg[0, :]
for t in range(1, max_len):
# insert input token embedding, previous hidden and previous cell states
# receive output tensor (predictions) and new hidden and cell states
output, hidden, cell = self.decoder(input, hidden, cell)
# place predictions in a tensor holding predictions for each token
outputs[t] = output
# decide if we are going to use teacher forcing or not
teacher_force = random.random() < teacher_forcing_ratio
# get the highest predicted token from our predictions
top1 = output.argmax(1)
# if teacher forcing, use actual next token as next input
# if not, use predicted token
input = trg[t] if teacher_force else top1
return outputs