forked from THU-VCLab/HGGD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_graspnet.py
410 lines (358 loc) · 17.4 KB
/
test_graspnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import os
import random
from time import time
import numpy as np
import open3d as o3d
import torch
from torch.utils.data import DataLoader
from customgraspnetAPI import Grasp as GraspNetGrasp
from customgraspnetAPI import GraspGroup as GraspNetGraspGroup
from customgraspnetAPI import GraspNetEval
from dataset.config import camera
from dataset.evaluation import anchor_output_process, collision_detect, detect_2d_grasp, detect_6d_grasp_multi
from dataset.grasp import GraspGroup as HGGDGraspGroup
from dataset.grasp import RectGraspGroup
from dataset.graspnet_dataset import GraspnetPointDataset
from dataset.pc_dataset_tools import data_process, feature_fusion
from models.anchornet import AnchorGraspNet, Backbone, AnchorNetOriginal
from models.localgraspnet import PointMultiGraspNet, LocalNetOriginal
from models.pointnet import PointNetfeat
from train_utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', default='resources/checkpoint')
parser.add_argument('--random-seed', type=int, default=1)
# dataset
parser.add_argument('--dataset-path', type=str, default='./data/6dto2drefine_realsense') # path to the labels
parser.add_argument('--scene-path', type=str, default='./graspnet') # path to the graspnet scenes
parser.add_argument('--logdir', type=str, default='./logs/') # logging directory
parser.add_argument('--description', type=str, default='realsense-mcu') # description for logging or checkpointing
parser.add_argument('--scene-l', type=int, default=100)
parser.add_argument('--scene-r', type=int, default=101)
parser.add_argument('--grasp-count', type=int, default=5000)
parser.add_argument('--dump-dir', default='./pred/test') # directory to save predictions
parser.add_argument('--num-workers', type=int, default=4) # number of workers for data loading
parser.add_argument('--input-h', type=int, default=160) # target height of input images
parser.add_argument('--input-w', type=int, default=320) # target width of input images
# 2d grasping
parser.add_argument('--sigma', type=int, default=10)
parser.add_argument('--ratio', type=int, default=8) # grasp attributes prediction downsample ratio, must be 2^N
parser.add_argument('--anchor-k', type=int, default=6) # in-plane rotation anchor number
parser.add_argument('--anchor-w', type=float, default=50.0) # grasp width anchor size
parser.add_argument('--anchor-z', type=float, default=20.0) # grasp depth anchor size
parser.add_argument('--grid-size', type=int, default=8) # grid size for grid-based center sampling
parser.add_argument('--feature-dim', type=int, default=128) # feature dimension for anchor net
# 6d grasping
parser.add_argument('--anchor-num', type=int, default=7) # spatial rotation anchor number
parser.add_argument('--all-points-num', type=int, default=25600) # downsampled max number of points in point cloud
parser.add_argument('--center-num', type=int, default=64) # sampled local center/region number (how many grasps are predicted)
parser.add_argument('--group-num', type=int, default=512) # local region pc number
parser.add_argument('--local-grasp-num', type=int, default=5000) # max. number of local grasps per batch for LocalNet
parser.add_argument('--heatmap-thres', type=float, default=0.01) # heatmap threshold
parser.add_argument('--depth-thres', type=float, default=0.02) # depth threshold for collision detection
parser.add_argument('--local-k', type=int, default=10) # grasp detection number in each local region (localnet)
parser.add_argument('--local-thres', type=float, default=0.01)
parser.add_argument('--rotation-num', type=int, default=1)
args = parser.parse_args()
gpu = torch.cuda.is_available()
# --------------------------------------------------------------------------- #
def inference():
sceneIds = list(range(args.scene_l, args.scene_r))
logging.info(f'testing from scene {args.scene_l} to {args.scene_r}')
# create dataset and dataloader
test_dataset = GraspnetPointDataset(args.all_points_num,
args.dataset_path,
args.scene_path,
sceneIds,
sigma=args.sigma,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_z=args.anchor_z,
anchor_w=args.anchor_w,
grasp_count=args.grasp_count,
output_size=(args.input_w, args.input_h),
random_rotate=False,
random_zoom=False)
SCENE_LIST = test_dataset.scene_list()
test_data = DataLoader(test_dataset, batch_size=1, pin_memory=True, num_workers=1)
test_data.dataset.unaug()
test_data.dataset.eval()
# init the model
ori_anchormodel = AnchorNetOriginal(feature_dim=args.feature_dim, ratio=args.ratio, anchor_k=args.anchor_k, in_dim=4, mode='34')
ori_localmodel = LocalNetOriginal(info_size=3, k_cls=args.anchor_num**2, feature_len=3)
resnet = Backbone(in_dim=4, planes=args.feature_dim//16, mode='34')
anchornet = AnchorGraspNet(feature_dim=args.feature_dim, ratio=args.ratio, anchor_k=args.anchor_k)
pointnet = PointNetfeat(feature_len=3)
localnet = PointMultiGraspNet(info_size=3, k_cls=args.anchor_num**2)
if gpu:
resnet = resnet.cuda()
anchornet = anchornet.cuda()
pointnet = pointnet.cuda()
localnet = localnet.cuda()
# load weights from original checkpoint
checkpoint = torch.load(args.checkpoint_path, weights_only=True, map_location=torch.device('cpu'))
ori_anchormodel.load_state_dict(checkpoint['anchor'])
ori_localmodel.load_state_dict(checkpoint['local'])
# transfer weights to new models
resnet.load_state_dict(ori_anchormodel.backbone.state_dict())
anchornet.load_state_dict(
ori_anchormodel.trconv.state_dict(prefix='trconv.') |
ori_anchormodel.hmap.state_dict(prefix='hmap.') |
ori_anchormodel.cls_mask_conv.state_dict(prefix='cls_mask_conv.') |
ori_anchormodel.theta_offset_conv.state_dict(prefix='theta_offset_conv.') |
ori_anchormodel.width_offset_conv.state_dict(prefix='width_offset_conv.') |
ori_anchormodel.depth_offset_conv.state_dict(prefix='depth_offset_conv.')
)
pointnet.load_state_dict(ori_localmodel.pointnet.state_dict())
localnet.load_state_dict(
ori_localmodel.point_layer.state_dict(prefix='point_layer.') |
ori_localmodel.info_layer.state_dict(prefix='info_layer.') |
ori_localmodel.anchor_mlp.state_dict(prefix='anchor_mlp.') |
ori_localmodel.offset_mlp.state_dict(prefix='offset_mlp.')
)
# load anchors
basic_ranges = torch.linspace(-1, 1, args.anchor_num + 1)
if gpu:
basic_ranges = basic_ranges.cuda()
basic_anchors = (basic_ranges[1:] + basic_ranges[:-1]) / 2
anchors = {'gamma': basic_anchors, 'beta': basic_anchors}
anchors['gamma'] = checkpoint['gamma']
anchors['beta'] = checkpoint['beta']
logging.info('Using saved anchors')
print('-> loaded checkpoint %s ' % (args.checkpoint_path))
# network eval mode
resnet.eval()
anchornet.eval()
pointnet.eval()
localnet.eval()
# stop rot and zoom for validation
test_dataset.eval()
time_2d, time_data, time_6d, time_colli, time_nms = 0, 0, 0, 0, 0
batch_idx = -1
vis_id = [] # idx to visualize
with torch.no_grad():
for anchor_data, rgb, ori_depth, grasppaths in test_data:
batch_idx += 1
# medfilt first
depth = ori_depth.numpy().squeeze()
# depth = medfilt2d(depth, kernel_size=5)
depth = torch.from_numpy(depth).float()[None]
# get scene points
if gpu:
view_points, _, _ = test_data.dataset.helper.to_scene_points(rgb.cuda(), depth.cuda(), include_rgb=True)
else:
view_points, _, _ = test_data.dataset.helper.to_scene_points(rgb, depth, include_rgb=True)
points = view_points[..., :3]
view_points = view_points.squeeze()
# get xyz maps
if gpu:
xyzs = test_data.dataset.helper.to_xyz_maps(depth.cuda())
else:
xyzs = test_data.dataset.helper.to_xyz_maps(depth)
# get labels
all_grasp_labels = []
for grasppath in grasppaths:
all_grasp_labels.append(np.load(grasppath))
# get time
start = time()
# 2d prediction
x, _, _, _, _ = anchor_data
if gpu:
x = x.cuda(non_blocking=True)
xs = resnet(x)
pred_2d, perpoint_features = anchornet(xs)
loc_map, cls_mask, theta_offset, height_offset, width_offset = anchor_output_process(*pred_2d, sigma=args.sigma)
# detect 2d grasp (x, y, theta)
rect_gg = detect_2d_grasp(loc_map,
cls_mask,
theta_offset,
height_offset,
width_offset,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_w=args.anchor_w,
anchor_z=args.anchor_z,
mask_thre=args.heatmap_thres,
center_num=args.center_num,
grid_size=args.grid_size,
grasp_nms=args.grid_size,
reduce='max')
# get 2d time
if batch_idx >= 1:
if gpu:
torch.cuda.synchronize()
time_2d += time() - start
# 2d bbox validation
idx = anchor_data[2].numpy().squeeze()
grasp_label = test_data.dataset.load_grasp_labels(idx)
gt_rect_gg = RectGraspGroup()
gt_rect_gg.load_from_dict(grasp_label)
# check 2d result
if rect_gg.size == 0:
print('No 2d grasp found')
continue
# data time
start = time()
# feature fusion
points_all = feature_fusion(points, perpoint_features, xyzs)
rect_ggs = [rect_gg]
if gpu:
depth = depth.cuda()
pc_group, valid_local_centers = data_process(
points_all,
depth,
rect_ggs,
args.center_num,
args.group_num,
(args.input_w, args.input_h),
min_points=32,
is_training=False)
rect_gg = rect_ggs[0]
# batch_size == 1 when valid
points_all = points_all.squeeze()
pc_group = pc_group.transpose(1, 2) # change structure for localnet
# get 2d grasp info (not grasp itself) for trainning
grasp_info = np.zeros((0, 3), dtype=np.float32)
g_thetas = rect_gg.thetas[None]
g_ws = rect_gg.widths[None]
g_ds = rect_gg.depths[None]
cur_info = np.vstack([g_thetas, g_ws, g_ds])
grasp_info = np.vstack([grasp_info, cur_info.T])
grasp_info = torch.from_numpy(grasp_info).to(dtype=torch.float32, device='cuda' if gpu else 'cpu')
# get data time
if batch_idx >= 1:
if gpu:
torch.cuda.synchronize()
time_data += time() - start
start = time()
# localnet (NMG)
features = pointnet(pc_group)
pred, offset = localnet(features, grasp_info)
# detect 6d grasp from 2d output and 6d output
pred_grasp, pred_rect_gg = detect_6d_grasp_multi(
rect_gg,
pred,
offset,
valid_local_centers,
(args.input_w, args.input_h),
anchors,
k=args.local_k
)
# get 6d time
if batch_idx >= 1:
if gpu:
torch.cuda.synchronize()
time_6d += time() - start
# get collision detect time
start = time()
# collision detect
pred_grasp_from_rect = pred_rect_gg.to_6d_grasp_group(depth=args.depth_thres)
pred_gg, valid_mask = collision_detect(points_all, pred_grasp_from_rect, mode='graspnet')
# pred_grasp = pred_grasp[valid_mask]
# get collision detect
if batch_idx >= 1:
if gpu:
torch.cuda.synchronize()
time_colli += time() - start
start = time()
# dump results for evaluation
gg = GraspNetGraspGroup()
for pred_g in pred_gg:
g = GraspNetGrasp(pred_g.score, pred_g.width, pred_g.height,
pred_g.depth, pred_g.rotation.reshape(9, ),
pred_g.translation, -1)
gg.add(g)
gg = gg.nms(0.03, 30 / 180 * np.pi)
gg = gg.sort_by_score()
if batch_idx >= 1:
if gpu:
torch.cuda.synchronize()
time_nms += time() - start
pred_gg = HGGDGraspGroup(translations=gg.translations,
rotations=gg.rotation_matrices,
heights=gg.heights,
widths=gg.widths,
depths=gg.depths,
scores=gg.scores,
object_ids=gg.object_ids)
if batch_idx in vis_id:
print('pred gg ==', len(pred_gg))
grasp_geo = pred_gg.to_open3d_geometry_list()
cloud = view_points[:, :3].cpu().numpy()
rgb = view_points[:, 3:6].cpu().numpy()
vispc = o3d.geometry.PointCloud()
vispc.points = o3d.utility.Vector3dVector(cloud)
vispc.colors = o3d.utility.Vector3dVector(rgb)
o3d.visualization.draw_geometries([vispc] + grasp_geo)
log_str = f'{batch_idx // 256}:{batch_idx % 256} pred 2d num: {rect_gg.size}'
log_str += f'\npred 6d num: {len(pred_grasp)} no-colli: {valid_mask.sum()} nms: {len(gg)}'
print(log_str)
# save grasps
save_dir = os.path.join(args.dump_dir, SCENE_LIST[batch_idx])
save_dir = os.path.join(save_dir, camera)
save_path = os.path.join(save_dir, str(batch_idx % 256).zfill(4) + '.npy')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
gg.save_npy(save_path)
# time stat
batch_idx -= 1
time_2d = time_2d / batch_idx * 1000
time_data = time_data / batch_idx * 1000
time_6d = time_6d / batch_idx * 1000
time_colli = time_colli / batch_idx * 1000
time_nms = time_nms / batch_idx * 1000
logging.info('Time stats:')
logging.info(f'Total: {time_2d + time_data + time_6d + time_colli + time_nms:.3f} ms')
logging.info(f'2d: {time_2d:.3f} ms data: {time_data:.3f} ms 6d: {time_6d:.3f} ms colli: {time_colli:.3f} ms nms: {time_nms:.3f} ms')
def evaluate():
ge = GraspNetEval(root=args.scene_path, camera=camera, split=(args.scene_l, args.scene_r))
res, ap, colli = ge.eval_scene_lr(args.dump_dir, args.scene_l, args.scene_r, proc=args.num_workers)
# get ap 0.8 and ap 0.4
aps = res.mean(0).mean(0).mean(0)
logging.info(f'Scene: {args.scene_l} ~ {args.scene_r}')
logging.info(f'colli == {colli}')
logging.info(f'ap == {ap}')
logging.info(f'ap0.8 == {aps[3]}')
logging.info(f'ap0.4 == {aps[1]}')
if __name__ == '__main__':
# multiprocess
# mp.set_start_method('spawn')
# set torch and gpu setting
np.set_printoptions(precision=4, suppress=True)
torch.set_printoptions(precision=4, sci_mode=False)
if gpu:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
# random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# set-up output directories
net_desc = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
net_desc = net_desc + '_' + args.description
net_desc = 'graspnet_test' + net_desc
save_folder = os.path.join(args.logdir, net_desc)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
# save commandline args
if args is not None:
params_path = os.path.join(save_folder, 'commandline_args.json')
with open(params_path, 'w') as f:
json.dump(vars(args), f)
# initialize logging
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
filename='{0}/{1}.log'.format(save_folder, 'log'),
format='[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s',
datefmt='%H:%M:%S')
# set up logging to console
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
inference()
evaluate()