-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathregionally_controlable_sampling.py
187 lines (157 loc) · 7.75 KB
/
regionally_controlable_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import hashlib
import json
import os.path
import torch
from diffusers import DPMSolverMultistepScheduler
from diffusers.models import T2IAdapter
from PIL import Image
from mixofshow.pipelines.pipeline_regionally_t2iadapter import RegionallyT2IAdapterPipeline
def sample_image(pipe,
input_prompt,
input_neg_prompt=None,
generator=None,
num_inference_steps=50,
guidance_scale=7.5,
sketch_adaptor_weight=1.0,
region_sketch_adaptor_weight='',
keypose_adaptor_weight=1.0,
region_keypose_adaptor_weight='',
**extra_kargs
):
keypose_condition = extra_kargs.pop('keypose_condition')
if keypose_condition is not None:
keypose_adapter_input = [keypose_condition] * len(input_prompt)
else:
keypose_adapter_input = None
sketch_condition = extra_kargs.pop('sketch_condition')
if sketch_condition is not None:
sketch_adapter_input = [sketch_condition] * len(input_prompt)
else:
sketch_adapter_input = None
images = pipe(
prompt=input_prompt,
negative_prompt=input_neg_prompt,
keypose_adapter_input=keypose_adapter_input,
keypose_adaptor_weight=keypose_adaptor_weight,
region_keypose_adaptor_weight=region_keypose_adaptor_weight,
sketch_adapter_input=sketch_adapter_input,
sketch_adaptor_weight=sketch_adaptor_weight,
region_sketch_adaptor_weight=region_sketch_adaptor_weight,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
**extra_kargs).images
return images
def build_model(pretrained_model, device):
pipe = RegionallyT2IAdapterPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16).to(device)
assert os.path.exists(os.path.join(pretrained_model, 'new_concept_cfg.json'))
with open(os.path.join(pretrained_model, 'new_concept_cfg.json'), 'r') as json_file:
new_concept_cfg = json.load(json_file)
pipe.set_new_concept_cfg(new_concept_cfg)
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(pretrained_model, subfolder='scheduler')
pipe.keypose_adapter = T2IAdapter.from_pretrained('TencentARC/t2iadapter_openpose_sd14v1', torch_dtype=torch.float16).to(device)
pipe.sketch_adapter = T2IAdapter.from_pretrained('TencentARC/t2iadapter_sketch_sd14v1', torch_dtype=torch.float16).to(device)
return pipe
def prepare_text(prompt, region_prompts, height, width):
'''
Args:
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
Returns:
full_prompt: subject1, attribute1 and subject2, attribute2, global text
context_prompt: subject1 and subject2, global text
entity_collection: [(subject1, attribute1), Location1]
'''
region_collection = []
regions = region_prompts.split('|')
for region in regions:
if region == '':
break
prompt_region, neg_prompt_region, pos = region.split('-*-')
prompt_region = prompt_region.replace('[', '').replace(']', '')
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
pos = eval(pos)
if len(pos) == 0:
pos = [0, 0, 1, 1]
else:
pos[0], pos[2] = pos[0] / height, pos[2] / height
pos[1], pos[3] = pos[1] / width, pos[3] / width
region_collection.append((prompt_region, neg_prompt_region, pos))
return (prompt, region_collection)
def parse_args():
parser = argparse.ArgumentParser('', add_help=False)
parser.add_argument('--pretrained_model', default='experiments/composed_edlora/anythingv4/hina+kario+tezuka+mitsuha+son_anythingv4/combined_model_base', type=str)
parser.add_argument('--sketch_condition', default=None, type=str)
parser.add_argument('--sketch_adaptor_weight', default=1.0, type=float)
parser.add_argument('--region_sketch_adaptor_weight', default='', type=str)
parser.add_argument('--keypose_condition', default=None, type=str)
parser.add_argument('--keypose_adaptor_weight', default=1.0, type=float)
parser.add_argument('--region_keypose_adaptor_weight', default='', type=str)
parser.add_argument('--save_dir', default=None, type=str)
parser.add_argument('--prompt', default='photo of a toy', type=str)
parser.add_argument('--negative_prompt', default='', type=str)
parser.add_argument('--prompt_rewrite', default='', type=str)
parser.add_argument('--seed', default=16141, type=int)
parser.add_argument('--suffix', default='', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
pipe = build_model(args.pretrained_model, device)
if args.sketch_condition is not None and os.path.exists(args.sketch_condition):
sketch_condition = Image.open(args.sketch_condition).convert('L')
width_sketch, height_sketch = sketch_condition.size
print('use sketch condition')
else:
sketch_condition, width_sketch, height_sketch = None, 0, 0
print('skip sketch condition')
if args.keypose_condition is not None and os.path.exists(args.keypose_condition):
keypose_condition = Image.open(args.keypose_condition).convert('RGB')
width_pose, height_pose = keypose_condition.size
print('use pose condition')
else:
keypose_condition, width_pose, height_pose = None, 0, 0
print('skip pose condition')
if width_sketch != 0 and width_pose != 0:
assert width_sketch == width_pose and height_sketch == height_pose, 'conditions should be same size'
width, height = max(width_pose, width_sketch), max(height_pose, height_sketch)
kwargs = {
'sketch_condition': sketch_condition,
'keypose_condition': keypose_condition,
'height': height,
'width': width,
}
prompts = [args.prompt]
prompts_rewrite = [args.prompt_rewrite]
input_prompt = [prepare_text(p, p_w, height, width) for p, p_w in zip(prompts, prompts_rewrite)]
save_prompt = input_prompt[0][0]
image = sample_image(
pipe,
input_prompt=input_prompt,
input_neg_prompt=[args.negative_prompt] * len(input_prompt),
generator=torch.Generator(device).manual_seed(args.seed),
sketch_adaptor_weight=args.sketch_adaptor_weight,
region_sketch_adaptor_weight=args.region_sketch_adaptor_weight,
keypose_adaptor_weight=args.keypose_adaptor_weight,
region_keypose_adaptor_weight=args.region_keypose_adaptor_weight,
**kwargs)
print(f'save to: {args.save_dir}')
configs = [
f'pretrained_model: {args.pretrained_model}\n',
f'context_prompt: {args.prompt}\n', f'neg_context_prompt: {args.negative_prompt}\n',
f'sketch_condition: {args.sketch_condition}\n', f'sketch_adaptor_weight: {args.sketch_adaptor_weight}\n',
f'region_sketch_adaptor_weight: {args.region_sketch_adaptor_weight}\n',
f'keypose_condition: {args.keypose_condition}\n', f'keypose_adaptor_weight: {args.keypose_adaptor_weight}\n',
f'region_keypose_adaptor_weight: {args.region_keypose_adaptor_weight}\n', f'random seed: {args.seed}\n',
f'prompt_rewrite: {args.prompt_rewrite}\n'
]
hash_code = hashlib.sha256(''.join(configs).encode('utf-8')).hexdigest()[:8]
save_prompt = save_prompt.replace(' ', '_')
save_name = f'{save_prompt}---{args.suffix}---{hash_code}.png'
save_dir = os.path.join(args.save_dir, f'seed_{args.seed}')
save_path = os.path.join(save_dir, save_name)
save_config_path = os.path.join(save_dir, save_name.replace('.png', '.txt'))
os.makedirs(save_dir, exist_ok=True)
image[0].save(os.path.join(save_dir, save_name))
with open(save_config_path, 'w') as fw:
fw.writelines(configs)