generated from TeddyHuang-00/streamlit-app-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
310 lines (287 loc) · 9.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from scipy.optimize import curve_fit
st.set_page_config(
page_title="GST酶活数据自动处理",
layout="wide",
page_icon="📈",
initial_sidebar_state="collapsed",
)
weekdays = {
1: "周一",
2: "周二",
3: "周三",
4: "周四",
5: "周五",
6: "周六",
7: "周日",
}
# Layout
st.title("📈GST酶活数据自动处理")
DATA, PROOF, RESULT = st.tabs(["提交数据", "数学推导", "拟合结果"])
if "template" not in st.session_state:
st.session_state["template"] = pd.read_csv("./template.csv")
@st.cache_data
def save_data(name: str, ID: str, group: str, cls: str, data: pd.DataFrame) -> None:
data.set_index(data.columns[0]).to_csv(f"./data/{cls}-{group}-{name}-{ID}.csv")
@st.cache_data
def load_text(file_path: str):
with open(file_path, "r") as f:
return f.read()
def is_valid_input() -> bool:
if len(st.session_state["NAME"]) == 0:
st.warning("请输入姓名", icon="⚠️")
return False
elif len(st.session_state["ID"]) < 10:
st.warning("请输入正确的学号", icon="⚠️")
return False
elif st.session_state["GROUP"] < 1 or st.session_state["GROUP"] > 6:
st.warning("请输入正确的组号", icon="⚠️")
return False
elif (
len(st.session_state["DATA"]) != 9 or len(st.session_state["DATA"].columns) != 8
):
st.error("数据不完整,请检查是否正确填写!", icon="❌")
return False
st.success("提交成功!", icon="🎉")
return True
# Modeling enzyme kinetics
def model(t, K, S=None):
if S is None:
S = st.session_state["S"]
epsilon = st.session_state["epsilon"]
L = st.session_state["L"]
return (1 - np.exp(-K * t)) * S * epsilon * L
def fit_data(Abs):
t = st.session_state["T"]
if st.session_state["fix_total"]:
guess = [0.1]
bounds = ([0], [10])
else:
guess = [0.1, st.session_state["S"]]
bounds = ([0, 0], [10, st.session_state["S"]])
popt, pcov = curve_fit(
f=model,
xdata=t,
ydata=Abs,
p0=guess,
bounds=bounds,
)
return popt
def fit_and_plot():
t = st.session_state["T"]
Abs = st.session_state["Abs"]
popt = fit_data(Abs)
K_estimate = popt[0]
if st.session_state["fix_total"]:
S_estimate = st.session_state["S"]
else:
S_estimate = popt[1]
tt = np.linspace(t[0], t[-1], 100)
fit = model(tt, *popt)
upper = model(tt, *popt * 1.025)
lower = model(tt, *popt * 0.975)
R_squared = np.corrcoef(Abs, model(t, *popt))[0, 1] ** 2
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(111)
ax.plot(t, Abs, "o", color="tab:blue", label="Raw data")
ax.plot(tt, fit, "-", color="tab:orange", label="Fitted curve")
ax.fill_between(tt, lower, upper, color="tab:orange", alpha=0.2)
ax.set_xlabel("Time(min)")
ax.set_ylabel("$Abs_{340}$(a.u.)")
ax.set_title(f"Fit of Abs data, R$^2$={R_squared:f}")
ax.legend()
# Output result
L, R = st.columns(2)
with L:
st.pyplot(fig)
with R:
st.markdown(
load_text("./assets/param.md")
.replace("PLACE_HOLDER_ESTIMATED_K", f"{K_estimate:.3f}")
.replace("PLACE_HOLDER_ESTIMATED_S", f"{S_estimate:.3f}")
)
return K_estimate, S_estimate
with PROOF:
st.markdown(load_text("./assets/proof.md"))
with DATA:
with st.form("基本信息"):
colName, colId, colClass, colGroup = st.columns(4)
with colName:
st.text_input(
label="姓名",
key="NAME",
)
with colId:
st.text_input(
label="学号",
value="2000000000",
max_chars=10,
key="ID",
)
with colClass:
st.selectbox(
label="班级",
options=list(weekdays.values()),
key="CLASS",
)
with colGroup:
st.selectbox(
label="组号",
options=[1, 2, 3, 4, 5, 6],
key="GROUP",
)
st.caption(
"表中各列分别代表 :red['时间 | 电动匀浆器 | 玻璃匀浆器 | 珠磨均质器 | pH6.0 | pH6.5 | pH7.0 | pH7.5'],数据如有复用也请完整填写,0min处数值应为0或近似于0"
)
st.session_state["DATA"] = st.experimental_data_editor(
st.session_state["template"],
key="DATA_EDITOR",
use_container_width=True,
num_rows="fixed",
).dropna()
submit = st.form_submit_button(
label="提交数据",
help="新提交数据会自动覆盖此前记录",
)
if submit:
st.session_state["IS_DATA_VALID"] = is_valid_input()
if st.session_state["IS_DATA_VALID"]:
save_data(
st.session_state["NAME"],
st.session_state["ID"],
st.session_state["GROUP"],
st.session_state["CLASS"],
st.session_state["DATA"],
)
with RESULT:
if not st.session_state.get("IS_DATA_VALID", False):
st.warning("请先提交数据,再查看拟合结果", icon="⚠️")
st.stop()
with st.expander("数据选择", expanded=False):
data = st.session_state["DATA"]
st.selectbox(label="选择处理数据", options=data.columns[1:], key="Choice")
st.session_state["T"] = data.iloc[:, 0].values
st.session_state["Abs"] = data[st.session_state["Choice"]].values
st.write("体系参数")
colsA = [st.columns(3) for _ in range(2)]
with colsA[0][0]:
st.number_input(
label="GSH终浓度(mM)",
min_value=0.0,
max_value=10.0,
value=1.0,
step=0.001,
format="%.3f",
key="S",
)
with colsA[0][1]:
st.number_input(
label="含酶样品加样量(μL)",
min_value=0.0,
max_value=10.0,
value=3.0,
step=0.001,
format="%.3f",
key="E",
)
with colsA[0][2]:
st.number_input(
label="体系总体积(mL)",
min_value=0.0,
max_value=5.0,
value=3.0,
step=0.001,
format="%.3f",
key="V",
)
with colsA[1][0]:
st.checkbox(
label="固定GSH浓度",
value=False,
help="固定后所输入的GSH终浓度将仅作参考,拟合结果中的浓度可能相差较大",
key="fix_total",
)
with colsA[1][1]:
st.number_input(
label="消光系数(ε)",
min_value=0.0,
max_value=10.0,
value=9.6,
step=0.001,
format="%.3f",
key="epsilon",
)
with colsA[1][2]:
st.number_input(
label="比色杯光程(cm)",
min_value=0.0,
max_value=5.0,
value=1.0,
step=0.001,
format="%.3f",
key="L",
)
if st.button(label="按同样参数处理所有数据"):
df = pd.DataFrame(
{
"Method": [],
"Enzyme_Activity_tot": [],
"Enzyme_Activity_avg": [],
"S_0": [],
"R^2": [],
}
)
for col_name in data.columns[1:]:
popt = fit_data(data[col_name].values)
K_estimate = popt[0]
if st.session_state["fix_total"]:
S_estimate = st.session_state["S"]
else:
S_estimate = popt[1]
K_tot = (1 - np.exp(-K_estimate)) * S_estimate * st.session_state["V"]
K_avg = (
(1 - np.exp(-K_estimate))
* S_estimate
* st.session_state["V"]
/ st.session_state["E"]
)
fit = model(st.session_state["T"], *popt)
R_squared = np.corrcoef(data[col_name].values, fit)[0, 1] ** 2
df = pd.concat(
[
df,
pd.DataFrame(
{
"Method": [col_name],
"Enzyme_Activity_tot": [K_tot],
"Enzyme_Activity_avg": [K_avg],
"S_0": [S_estimate],
"R^2": [R_squared],
}
),
]
)
df = df.set_index("Method")
st.dataframe(df)
st.download_button(
label="下载结果",
data=df.to_csv(),
file_name="result.csv",
mime="text/csv",
)
with st.expander("计算结果", expanded=False):
K_estimate, S_estimate = fit_and_plot()
st.markdown(
load_text("./assets/result.md")
.replace(
"PLACE_HOLDER_TOTAL_ENZYME_ACTIVITY",
f"{(1 - np.exp(-K_estimate)) * S_estimate * st.session_state['V']:.4f}",
)
.replace(
"PLACE_HOLDER_UNIT_ENZYME_ACTIVITY",
f"{(1 - np.exp(-K_estimate))* S_estimate* st.session_state['V']/ st.session_state['E']:.4f}",
)
)