-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_ingest.py
55 lines (36 loc) · 1.32 KB
/
data_ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import DirectoryLoader
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
import os
from dotenv import load_dotenv
load_dotenv()
# Set API keys
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
os.environ['PINECONE_API_KEY'] = os.getenv("PINECONE_API_KEY")
index_name = "branding-course"
embeddings = OpenAIEmbeddings()
folder_path = "./files"
def create_vectordb(folder_path):
loader = DirectoryLoader(folder_path)
documents = loader.load()
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=50,
length_function=len,
is_separator_regex=False
)
docs = splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vectordb = PineconeVectorStore.from_documents(
docs,
index_name=index_name,
namespace= "brandingcourse",
embedding=embeddings
)
return vectordb
if __name__ == "__main__":
create_vectordb(folder_path)