-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingest_polars.py
281 lines (241 loc) · 9.14 KB
/
ingest_polars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# /// script
# dependencies = [
# "duckdb",
# "polars",
# "cloudpathlib[s3]",
# "tqdm",
# "pyarrow",
# "boto3",
# ]
# ///
import json
import shutil
from pathlib import Path
import boto3
import duckdb
import polars as pl
from cloudpathlib import S3Path
from tqdm.auto import tqdm
TESTING_SET = {
"metadata": "s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool_meta_data.parquet",
"files": [
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_1_01_01_annotation.parquet",
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_2_01_01_annotation.parquet",
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_3_01_01_annotation.parquet",
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_4_01_01_annotation.parquet",
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_5_01_01_annotation.parquet",
"s3://terraform-workstations-bucket/jspaezp/20241022_prospect/TUM_third_pool/TUM_third_pool/TUM_third_pool_6_01_01_annotation.parquet",
],
}
OUTPUT_LOC = "s3://terraform-workstations-bucket/jspaezp/20241115_prospect/"
# con = duckdb.connect(database=":memory:")
# # Read in the metadata file
# meta = con.read_parquet(TESTING_SET["metadata"])
# first_row = meta.fetchone()
# cols = meta.columns
# first_row_dict = {k:v for k,v in zip(cols, first_row)}
# print(first_row_dict)
{
"raw_file": "01812a_GA3-TUM_third_pool_1_01_01-DDA-1h-R1",
"scan_number": 23850,
"modified_sequence": "QLQQIERQLK",
"precursor_charge": 2,
"precursor_intensity": 19577780.0,
"mz": 642.37514,
"precursor_mz": 642.3751967147814,
"fragmentation": "CID",
"mass_analyzer": "ITMS",
"retention_time": 27.111,
"indexed_retention_time": 30.483830533968415,
"andromeda_score": 297.36,
"peptide_length": 10,
"orig_collision_energy": 35.0,
"aligned_collision_energy": 35.0,
}
# # Now the same for the first file
# file = con.read_parquet(TESTING_SET["files"][0])
# first_row = file.fetchone()
# cols = file.columns
# first_row_dict = {k:v for k,v in zip(cols, first_row)}
# print(first_row_dict)
{
"ion_type": "y",
"no": 1,
"charge": 1,
"experimental_mass": 147.11246,
"theoretical_mass": 147.112804137,
"intensity": 0.31,
"neutral_loss": "",
"fragment_score": 100,
"peptide_sequence": "DNYDQLVRIAK",
"scan_number": 34341,
"raw_file": "01812a_GA3-TUM_third_pool_1_01_01-DDA-1h-R1",
}
def stage_files(metadata_path, files) -> tuple[Path, list[Path]]:
# Download the files to a local directory
s3 = boto3.client("s3")
partition_name = metadata_path.split("/")[-1].replace("_meta_data.parquet", "")
local_dir = Path("staged_files") / partition_name
local_dir.mkdir(exist_ok=True, parents=True)
for file in tqdm(
files + [metadata_path],
desc=f"Downloading files for {partition_name}",
):
filepath = S3Path(file)
s3.download_file(filepath.bucket, filepath.key, local_dir / filepath.name)
out_metadata_path = local_dir / S3Path(metadata_path).name
out_files = [local_dir / S3Path(x).name for x in files]
return out_metadata_path, out_files
def ingest_to_duckdb(metadata_path, files):
partition_name = metadata_path.split("/")[-1].replace("_meta_data.parquet", "")
duckdb_file_name = partition_name + ".duckdb"
if Path(duckdb_file_name).exists():
raise FileExistsError(f"File {duckdb_file_name} already exists")
metadata_path, files = stage_files(metadata_path, files)
col = {
"start_nrows_meta": None,
"start_nrows_files": None,
"end_nrows_meta": None,
"end_nrows_files": None,
}
scanned_metadata = pl.scan_parquet(metadata_path).with_columns(
partition=pl.lit(partition_name),
)
col["start_nrows_meta"] = scanned_metadata.select(pl.len()).collect().item()
grouping_cols = [
"raw_file",
"modified_sequence",
"precursor_charge",
"fragmentation",
"mass_analyzer",
]
dedup_scanned_metadata = (
scanned_metadata.group_by(grouping_cols)
.agg(pl.all().top_k_by(pl.col("andromeda_score"), 2))
.explode(pl.all().exclude(grouping_cols))
)
read_metadata = dedup_scanned_metadata.collect()
col["end_nrows_meta"] = len(read_metadata)
with duckdb.connect(database=duckdb_file_name, read_only=False) as con:
con.execute(
"""
CREATE TABLE IF NOT EXISTS 'precursor' AS SELECT * FROM read_metadata;
""",
)
join_cols_l = ["raw_file", "scan_number", "peptide_sequence"]
join_cols_r = ["raw_file", "scan_number", "modified_sequence"]
# I dont have enough mem to use more than 1 file at a time :(
file_chunksize = 1
chunked_files = [
files[i : i + file_chunksize] for i in range(0, len(files), file_chunksize)
]
is_first = True
for filechunk in tqdm(chunked_files):
scanned_files = pl.scan_parquet(files)
col["start_nrows_files"] = scanned_files.select(pl.len()).collect().item()
scanned_files_j = scanned_files.with_columns(
partition=pl.lit(partition_name),
).join(
read_metadata.lazy(),
left_on=join_cols_l,
right_on=join_cols_r,
how="semi",
)
num_read_lines = 0
try:
unique_ion_types = scanned_files.select(
pl.col("ion_type").unique(),
).collect()
for ion_type in unique_ion_types["ion_type"]:
filtered_scanned_files = scanned_files_j.filter(
pl.col("ion_type") == ion_type,
)
read_files = filtered_scanned_files.collect(streaming=True)
num_read_lines += len(read_files)
with duckdb.connect(database=duckdb_file_name, read_only=False) as con:
if is_first:
con.execute(
"""
CREATE TABLE IF NOT EXISTS 'fragment' AS
SELECT * FROM read_files;
""",
)
is_first = False
else:
con.execute(
"""
INSERT INTO fragment
SELECT * FROM read_files;
""",
)
con.execute("CHECKPOINT")
except pl.exceptions.ComputeError:
# polars.exceptions.ComputeError: parquet: File out of specification:
# underlying IO error: corrupt deflate stream
with open("corrupt_files.txt", "a") as f:
for file in filechunk:
f.write(file + "\n")
continue
shutil.rmtree(metadata_path.parent)
return duckdb_file_name
def export_to_parquet(duckdb_file_name, partition_name) -> None:
fg_loc = f"fragments_pq/partition={partition_name}"
pq_loc = f"precursors_pq/partition={partition_name}"
Path(fg_loc).mkdir(parents=True)
Path(pq_loc).mkdir(parents=True)
with duckdb.connect(database=duckdb_file_name) as con:
con.execute(
f"""
COPY fragment TO '{fg_loc}' (
FORMAT PARQUET,
PARTITION_BY (ion_type),
OVERWRITE TRUE,
FILENAME_PATTERN 'file_{{i}}'
)
""",
)
con.execute(
f"""COPY precursor TO '{pq_loc}' (
FORMAT PARQUET,
PARTITION_BY (mass_analyzer, fragmentation),
OVERWRITE TRUE,
FILENAME_PATTERN 'file_{{i}}'
)
""",
)
def upload_to_s3(local_dir: Path, s3_path: S3Path, dry_run=False) -> None:
# Upload a directory.
# For instance if the local path is "myfiles/mydir/foo.parquet"
# And I pass as a local dir "myfiles"
# and the s3 path is "s3://mybucket/somewhere/"
# the file will be uploaded to "s3://mybucket/somewhere/myfiles/mydir/foo.parquet"
s3 = boto3.client("s3")
s3_prefix_key = s3_path.key
for file in local_dir.rglob("*.parquet"):
out_key = s3_prefix_key / file.relative_to(local_dir)
if dry_run:
pass
else:
s3.upload_file(file, s3_path.bucket, out_key)
def main() -> None:
partitions = json.load(open("data/annot.json"))
for part_name, part in tqdm(partitions.items()):
dbname = part_name + ".duckdb"
try:
ingest_to_duckdb(part["metadata"], part["files"])
except FileExistsError:
pass
try:
export_to_parquet(dbname, part_name)
except FileExistsError:
pass
upload_to_s3(
Path("fragments_pq"),
S3Path(OUTPUT_LOC) / "fragments",
)
upload_to_s3(
Path("precursors_pq"),
S3Path(OUTPUT_LOC) / "precursors",
)
if __name__ == "__main__":
main()