-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloaders.py
237 lines (187 loc) · 8.23 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.neighbors import NearestNeighbors
from PIL import Image
import albumentations as A
from pathlib import Path
import pandas as pd
import numpy as np
from config import cfg
LOW = np.exp(-15 / 10)
HIGH = np.exp(5 / 10)
class AporeeDataset(Dataset):
def __init__(self, root, filter_fn=None, augment=False, max_samples=None,is_vit_for_audio=True):
super().__init__()
self.root = Path(root)
self.meta = pd.read_csv(self.root / 'metadata.csv')
self.is_vit_for_audio = is_vit_for_audio
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
self.unnormalize = Unnormalize(mean=mean, std=std)
self.maxlen = max_samples
if augment and 'image' in cfg.AugmentationMode:
self.imgtransform = A.Compose([
A.CenterCrop(512, 512),
A.RandomResizedCrop(224, 224, scale=[0.5, 1.0]),
A.Rotate(limit=180, p=1.0),
A.Blur(blur_limit=3),
A.GridDistortion(),
A.HueSaturationValue(),
A.Normalize(mean=0.0,std=1.0),
])
else:
self.imgtransform = A.Compose([
A.CenterCrop(384, 384),
A.Resize(224, 224),
A.Normalize(mean=0.0,std=1.0)
])
if cfg.AudioAugmentationMode and self.is_vit_for_audio:
self.audiotransform = A.Compose([
A.Resize(224,224),
A.Normalize(mean=0.0,std=1.0)
])
# join and merge
img_present = set(int(f.stem) for f in (self.root).glob('images/*.jpg'))
snd_present = set(int(f.stem) for f in (self.root).glob('spectrograms/*.jpg'))
keys_present = img_present.intersection(snd_present)
self.meta = self.meta[self.meta.short_key.isin(keys_present)]
if filter_fn:
self.meta = self.meta[self.meta.short_key.apply(filter_fn)]
self.meta = self.meta.reset_index(drop=True)
self.key2idx = {v: i for i, v in enumerate(self.meta.key)}
self.augment = augment
print('Number of Samples:', len(self.meta))
def get_asymmetric_sampler(self, batch_size, asymmetry):
lon = np.radians(self.meta.longitude.values)
lat = np.radians(self.meta.latitude.values)
coords = np.stack([
np.cos(lon) * np.cos(lat),
np.sin(lon) * np.cos(lat),
np.sin(lat),
], axis=1)
return AsymmetricSampler(coords, asymmetry, batch_size)
def get_batch(self, keys):
true_indices = map(self.key2idx.get, keys)
return self.collate([self[i] for i in true_indices])
def collate(self, batch):
key, img, audio, audio_split, v = zip(*batch)
key = torch.tensor(key)
img = torch.stack(img, dim=0)
audio = torch.cat(audio, dim=0).unsqueeze(1)
if self.is_vit_for_audio:
audio = audio.repeat(1,3,1,1)
audio_split = None
else:
audio_split = audio_split
v = torch.stack(v, dim=0)
return key, img, audio, audio_split, v
def __getitem__(self, idx):
sample = self.meta.iloc[idx]
key = sample.short_key
# img = cv2.imread(str(self.root / 'images' / f'{key}.jpg'))
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.array(Image.open(self.root / 'images' / f'{key}.jpg'))
img = self.imgtransform(image=img)['image']
img = torch.from_numpy(img).permute(2, 0, 1)
# audio = cv2.imread(str(self.root / 'spectrograms' / f'{key}.jpg')).astype(np.float32)
audio = np.array(Image.open(self.root / 'spectrograms' / f'{key}.jpg')).astype(np.float32)
audio = audio * ((HIGH - LOW) / 255) + LOW
if audio.shape[1] > 128 * self.maxlen:
start = int(torch.randint(0, audio.shape[1] - 128*self.maxlen, []))
audio = audio[:, start:start+128*self.maxlen]
if self.is_vit_for_audio:
audio = self.audiotransform(image=audio)['image']
audio = audio.reshape(224,-1,224).transpose(1,0,2)
else:
audio = audio.reshape(128, -1, 128).transpose(1, 0, 2)
audio = torch.from_numpy(audio)
lon = np.radians(sample.longitude)
lat = np.radians(sample.latitude)
x = np.cos(lat) * np.cos(lon)
y = np.cos(lat) * np.sin(lon)
z = np.sin(lat)
v = torch.from_numpy(np.stack([x, y, z])).float()
return [key, img, audio, audio.shape[0], v]
def __len__(self):
return len(self.meta)
class AsymmetricSampler(torch.utils.data.Sampler):
def __init__(self, coords, asymmetry, batch_size):
self.coords = coords
self.asymmetry = asymmetry
self.batch_size = batch_size
self.knn = NearestNeighbors(n_neighbors=batch_size)
self.knn.fit(self.coords)
def sample_around(self, start):
batch_idx = set([start])
offset = self.asymmetry * self.coords[start]
while len(batch_idx) < self.batch_size:
X = torch.randn([1, 3]).numpy() + offset
X = X / np.linalg.norm(X, ord='fro')
_, candidates = self.knn.kneighbors(X)
indices = (int(c) for c in candidates[0])
batch_idx.add(next(i for i in indices if i not in batch_idx))
return list(batch_idx)
def rand(self):
return int(torch.randint(0, self.coords.shape[0], []))
def __iter__(self, ):
for i in range(len(self)):
if i % 2 == 0:
start = self.rand()
yield self.sample_around(start)
else:
yield [self.rand() for _ in range(self.batch_size)]
def __len__(self, ):
return self.coords.shape[0] // self.batch_size
class Unnormalize:
def __init__(self, mean, std):
self.mean = torch.tensor(mean).reshape(1, -1, 1, 1)
self.std = torch.tensor(std).reshape(1, -1, 1, 1)
def __call__(self, tensor):
return tensor.mul(self.std).add(self.mean)
def get_loader(batch_size, mode, num_workers=2, asymmetry=0, max_samples=100,data_root='./datasets/SoundingEarth/data',is_vit_for_audio=False):
FACTOR = 10
filter_fn = {
'train': lambda x: (x%FACTOR) not in (7, 5, 2),
'val': lambda x: (x%FACTOR) == 7,
'test': lambda x: (x%FACTOR) in (2, 5),
'toy': lambda x: (x%1000) in (2, 5),
'all': lambda x: True
}.get(mode)
is_train = (mode == 'train')
dataset = AporeeDataset(root=data_root, filter_fn=filter_fn, augment=is_train, max_samples=max_samples,is_vit_for_audio=is_vit_for_audio)
loader_args = dict(
batch_size = batch_size,
pin_memory = False,
num_workers = num_workers,
shuffle = is_train,
collate_fn = dataset.collate,
drop_last = True,
prefetch_factor=2
)
if asymmetry != 0:
loader_args['batch_sampler'] = dataset.get_asymmetric_sampler(batch_size, asymmetry)
del loader_args['batch_size']
del loader_args['shuffle']
del loader_args['drop_last']
return DataLoader(dataset, **loader_args)
if __name__=="__main__":
# imDataset = ImageDataset()
# imDataloader = DataLoader(dataset=imDataset.x,batch_size=10,shuffle=False)
# sndDataset = SoundDataset()
# sndDataloader = DataLoader(dataset=sndDataset.x,batch_size=10,shuffle=False)
#get dataloader
loader = get_loader(batch_size=32,mode="val")
# print("metadata length: ",len(loader))
#get dataset
ds = AporeeDataset(root='./datasets/SoundingEarthData/data',max_samples=50)
#loader = DataLoader(ds)
#key0,img0,audio0,audioshape0,v0 = ds[0]
for i in range(4):
k,i,a,asp,v = ds[i]
print(f'key:{k},img:{i.shape},audio:{a.shape},audioshape:{asp},v:{v}')
# for i,inputs in enumerate(loader):
# if i>1:
# break
# print(f"{i} \
# input {inputs[0].shape}: img_shape:{inputs[1]},snd_shape:{inputs[2]}\
# audio_splits:{inputs[3]}, dis: {inputs[4]}")