diff --git a/docs/JOSS/paper.bib b/docs/JOSS/paper.bib index 9f141dc..5e00177 100644 --- a/docs/JOSS/paper.bib +++ b/docs/JOSS/paper.bib @@ -116,4 +116,15 @@ @Manual{symengine url = {https://github.com/symengine/symengine}, } +@InProceedings{Lafortune1997, + author = {Lafortune, Eric P. F. and Foo, Sing-Choong and Torrance, Kenneth E. and Greenberg, Donald P.}, + booktitle = {Proceedings of the 24th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’97}, + title = {Non-linear approximation of reflectance functions}, + year = {1997}, + publisher = {ACM Press}, + series = {SIGGRAPH ’97}, + collection = {SIGGRAPH ’97}, + doi = {10.1145/258734.258801}, +} + @Comment{jabref-meta: databaseType:bibtex;} diff --git a/docs/JOSS/paper.md b/docs/JOSS/paper.md index 46d8217..6d2ed21 100644 --- a/docs/JOSS/paper.md +++ b/docs/JOSS/paper.md @@ -52,9 +52,9 @@ For example, the RT1 modeling framework was used for soil-moisture retrieval fro The package provides a set of distribution functions (Isotropic, Rayleigh, HenyeyGreenstein, ...) that can be used to describe basic volume- or surface scatternig behaviors. More complex scattering scenarios can then be modelled by utilizing parametric linear-combinations. -To support possibly anisotropic scattering characteristics, all functions are furthermore implemented with respect to a generalized scattering angle \ref{eq_scat_angle} @Lafortune: +To support possibly anisotropic scattering characteristics, all functions are furthermore implemented with respect to a generalized scattering angle \autoref{eq:scatangle} @Lafortune: -$$\cos(\Theta_a) = a_0 \cos(\theta) \cos(\theta_s) + \sin(\theta)\sin(\theta_s) [ a_1 \cos(\phi)\cos(\phi_s) + a_2 \sin(\phi) \sin(\phi_s)] \label{eq_scat_angle}$$ +$$\cos(\Theta_a) = a_0 \cos(\theta) \cos(\theta_s) + \sin(\theta)\sin(\theta_s) [ a_1 \cos(\phi)\cos(\phi_s) + a_2 \sin(\phi) \sin(\phi_s)] \label{scatangle}$$ where ($\theta, \phi$) denote the incident azimuth and polar angle and $(\theta_s, \phi_s)$ the corresponding exit angles and $(a_0, a_1, a_2)$ are the generalization parameters. @@ -62,7 +62,7 @@ For example, a combination of a forward- and a backward oriented HenyeyGreenstei $$BRDF = w * HG(-t, a_0=-1) + (1-w) * HG(t, a_0=1) \quad \textrm{with} \quad w, t \in (0,1)$$ -Can be implemented via: +can be implemented via: ``` from rt1_model import surface