-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdemo.py
337 lines (295 loc) · 12.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import argparse
import os
import random
from time import time
import numpy as np
import open3d as o3d
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
from PIL import Image
from dataset.config import get_camera_intrinsic
from dataset.evaluation import (anchor_output_process, collision_detect,
detect_2d_grasp, detect_6d_grasp_multi)
from dataset.pc_dataset_tools import data_process, feature_fusion
from models.anchornet import AnchorGraspNet
from models.localgraspnet import PointMultiGraspNet
from train_utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', default=None)
# image input
parser.add_argument('--rgb-path')
parser.add_argument('--depth-path')
# 2d
parser.add_argument('--input-h', type=int)
parser.add_argument('--input-w', type=int)
parser.add_argument('--sigma', type=int, default=10)
parser.add_argument('--use-depth', type=int, default=1)
parser.add_argument('--use-rgb', type=int, default=1)
parser.add_argument('--ratio', type=int, default=8)
parser.add_argument('--anchor-k', type=int, default=6)
parser.add_argument('--anchor-w', type=float, default=50.0)
parser.add_argument('--anchor-z', type=float, default=20.0)
parser.add_argument('--grid-size', type=int, default=8)
# pc
parser.add_argument('--anchor-num', type=int)
parser.add_argument('--all-points-num', type=int)
parser.add_argument('--center-num', type=int)
parser.add_argument('--group-num', type=int)
# grasp detection
parser.add_argument('--heatmap-thres', type=float, default=0.01)
parser.add_argument('--local-k', type=int, default=10)
parser.add_argument('--local-thres', type=float, default=0.01)
parser.add_argument('--rotation-num', type=int, default=1)
# others
parser.add_argument('--random-seed', type=int, default=123, help='Random seed')
args = parser.parse_args()
class PointCloudHelper:
def __init__(self, all_points_num) -> None:
# precalculate x,y map
self.all_points_num = all_points_num
self.output_shape = (80, 45)
# get intrinsics
intrinsics = get_camera_intrinsic()
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
# cal x, y
ymap, xmap = np.meshgrid(np.arange(720), np.arange(1280))
points_x = (xmap - cx) / fx
points_y = (ymap - cy) / fy
self.points_x = torch.from_numpy(points_x).float()
self.points_y = torch.from_numpy(points_y).float()
# for get downsampled xyz map
ymap, xmap = np.meshgrid(np.arange(self.output_shape[1]),
np.arange(self.output_shape[0]))
factor = 1280 / self.output_shape[0]
points_x = (xmap - cx / factor) / (fx / factor)
points_y = (ymap - cy / factor) / (fy / factor)
self.points_x_downscale = torch.from_numpy(points_x).float()
self.points_y_downscale = torch.from_numpy(points_y).float()
def to_scene_points(self,
rgbs: torch.Tensor,
depths: torch.Tensor,
include_rgb=True):
batch_size = rgbs.shape[0]
feature_len = 3 + 3 * include_rgb
points_all = -torch.ones(
(batch_size, self.all_points_num, feature_len),
dtype=torch.float32).cuda()
# cal z
idxs = []
masks = (depths > 0)
cur_zs = depths / 1000.0
cur_xs = self.points_x.cuda() * cur_zs
cur_ys = self.points_y.cuda() * cur_zs
for i in range(batch_size):
# convert point cloud to xyz maps
points = torch.stack([cur_xs[i], cur_ys[i], cur_zs[i]], axis=-1)
# remove zero depth
mask = masks[i]
points = points[mask]
colors = rgbs[i][:, mask].T
# random sample if points more than required
if len(points) >= self.all_points_num:
cur_idxs = random.sample(range(len(points)),
self.all_points_num)
points = points[cur_idxs]
colors = colors[cur_idxs]
# save idxs for concat fusion
idxs.append(cur_idxs)
# concat rgb and features after translation
if include_rgb:
points_all[i] = torch.concat([points, colors], axis=1)
else:
points_all[i] = points
return points_all, idxs, masks
def to_xyz_maps(self, depths):
# downsample
downsample_depths = F.interpolate(depths[:, None],
size=self.output_shape,
mode='nearest').squeeze(1).cuda()
# convert xyzs
cur_zs = downsample_depths / 1000.0
cur_xs = self.points_x_downscale.cuda() * cur_zs
cur_ys = self.points_y_downscale.cuda() * cur_zs
xyzs = torch.stack([cur_xs, cur_ys, cur_zs], axis=-1)
return xyzs.permute(0, 3, 1, 2)
def inference(view_points,
xyzs,
x,
ori_depth,
vis_heatmap=False,
vis_grasp=True):
with torch.no_grad():
# 2d prediction
pred_2d, perpoint_features = anchornet(x)
loc_map, cls_mask, theta_offset, height_offset, width_offset = \
anchor_output_process(*pred_2d, sigma=args.sigma)
# detect 2d grasp (x, y, theta)
rect_gg = detect_2d_grasp(loc_map,
cls_mask,
theta_offset,
height_offset,
width_offset,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_w=args.anchor_w,
anchor_z=args.anchor_z,
mask_thre=args.heatmap_thres,
center_num=args.center_num,
grid_size=args.grid_size,
grasp_nms=args.grid_size,
reduce='max')
# check 2d result
if rect_gg.size == 0:
print('No 2d grasp found')
return
# show heatmap
if vis_heatmap:
rgb_t = x[0, 1:].cpu().numpy().squeeze().transpose(2, 1, 0)
resized_rgb = Image.fromarray((rgb_t * 255.0).astype(np.uint8))
resized_rgb = np.array(
resized_rgb.resize((args.input_w, args.input_h))) / 255.0
depth_t = ori_depth.cpu().numpy().squeeze().T
plt.subplot(221)
plt.imshow(rgb_t)
plt.subplot(222)
plt.imshow(depth_t)
plt.subplot(223)
plt.imshow(loc_map.squeeze().T, cmap='jet')
plt.subplot(224)
rect_rgb = rect_gg.plot_rect_grasp_group(resized_rgb, 0)
plt.imshow(rect_rgb)
plt.tight_layout()
plt.show()
# feature fusion
points_all = feature_fusion(view_points[..., :3], perpoint_features,
xyzs)
rect_ggs = [rect_gg]
pc_group, valid_local_centers = data_process(
points_all,
ori_depth,
rect_ggs,
args.center_num,
args.group_num, (args.input_w, args.input_h),
min_points=32,
is_training=False)
rect_gg = rect_ggs[0]
# batch_size == 1 when valid
points_all = points_all.squeeze()
# get 2d grasp info (not grasp itself) for trainning
grasp_info = np.zeros((0, 3), dtype=np.float32)
g_thetas = rect_gg.thetas[None]
g_ws = rect_gg.widths[None]
g_ds = rect_gg.depths[None]
cur_info = np.vstack([g_thetas, g_ws, g_ds])
grasp_info = np.vstack([grasp_info, cur_info.T])
grasp_info = torch.from_numpy(grasp_info).to(dtype=torch.float32,
device='cuda')
# localnet
_, pred, offset = localnet(pc_group, grasp_info)
# detect 6d grasp from 2d output and 6d output
_, pred_rect_gg = detect_6d_grasp_multi(rect_gg,
pred,
offset,
valid_local_centers,
(args.input_w, args.input_h),
anchors,
k=args.local_k)
# collision detect
pred_grasp_from_rect = pred_rect_gg.to_6d_grasp_group(depth=0.02)
pred_gg, _ = collision_detect(points_all,
pred_grasp_from_rect,
mode='graspnet')
# nms
pred_gg = pred_gg.nms()
# show grasp
if vis_grasp:
print('pred grasp num ==', len(pred_gg))
grasp_geo = pred_gg.to_open3d_geometry_list()
points = view_points[..., :3].cpu().numpy().squeeze()
colors = view_points[..., 3:6].cpu().numpy().squeeze()
vispc = o3d.geometry.PointCloud()
vispc.points = o3d.utility.Vector3dVector(points)
vispc.colors = o3d.utility.Vector3dVector(colors)
o3d.visualization.draw_geometries([vispc] + grasp_geo)
return pred_gg
if __name__ == '__main__':
# set up pc transform helper
pc_helper = PointCloudHelper(all_points_num=args.all_points_num)
# set torch and gpu setting
np.set_printoptions(precision=4, suppress=True)
torch.set_printoptions(precision=4, sci_mode=False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
else:
raise RuntimeError('CUDA not available')
# random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# Init the model
anchornet = AnchorGraspNet(in_dim=4,
ratio=args.ratio,
anchor_k=args.anchor_k)
localnet = PointMultiGraspNet(info_size=3, k_cls=args.anchor_num**2)
# gpu
anchornet = anchornet.cuda()
localnet = localnet.cuda()
# Load checkpoint
check_point = torch.load(args.checkpoint_path)
anchornet.load_state_dict(check_point['anchor'])
localnet.load_state_dict(check_point['local'])
# load checkpoint
basic_ranges = torch.linspace(-1, 1, args.anchor_num + 1).cuda()
basic_anchors = (basic_ranges[1:] + basic_ranges[:-1]) / 2
anchors = {'gamma': basic_anchors, 'beta': basic_anchors}
anchors['gamma'] = check_point['gamma']
anchors['beta'] = check_point['beta']
logging.info('Using saved anchors')
print('-> loaded checkpoint %s ' % (args.checkpoint_path))
# network eval mode
anchornet.eval()
localnet.eval()
# read image and conver to tensor
ori_depth = np.array(Image.open(args.depth_path))
ori_rgb = np.array(Image.open(args.rgb_path)) / 255.0
ori_depth = np.clip(ori_depth, 0, 1000)
ori_rgb = torch.from_numpy(ori_rgb).permute(2, 1, 0)[None]
ori_rgb = ori_rgb.to(device='cuda', dtype=torch.float32)
ori_depth = torch.from_numpy(ori_depth).T[None]
ori_depth = ori_depth.to(device='cuda', dtype=torch.float32)
# get scene points
view_points, _, _ = pc_helper.to_scene_points(ori_rgb,
ori_depth,
include_rgb=True)
# get xyz maps
xyzs = pc_helper.to_xyz_maps(ori_depth)
# pre-process
rgb = F.interpolate(ori_rgb, (args.input_w, args.input_h))
depth = F.interpolate(ori_depth[None], (args.input_w, args.input_h))[0]
depth = depth / 1000.0
depth = torch.clip((depth - depth.mean()), -1, 1)
# generate 2d input
x = torch.concat([depth[None], rgb], 1)
x = x.to(device='cuda', dtype=torch.float32)
# inference
pred_gg = inference(view_points,
xyzs,
x,
ori_depth,
vis_heatmap=True,
vis_grasp=True)
# time test
start = time()
T = 100
for _ in range(T):
pred_gg = inference(view_points,
xyzs,
x,
ori_depth,
vis_heatmap=False,
vis_grasp=False)
torch.cuda.synchronize()
print('avg time ==', (time() - start) / T * 1e3, 'ms')