-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom.xml
101 lines (52 loc) · 22.7 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>SunHao</title>
<subtitle>SunHaoの博客</subtitle>
<link href="https://sunhao-ai.github.io/atom.xml" rel="self"/>
<link href="https://sunhao-ai.github.io/"/>
<updated>2021-11-20T14:14:36.354Z</updated>
<id>https://sunhao-ai.github.io/</id>
<author>
<name>SunHao</name>
</author>
<generator uri="https://hexo.io/">Hexo</generator>
<entry>
<title></title>
<link href="https://sunhao-ai.github.io/posts/0.html"/>
<id>https://sunhao-ai.github.io/posts/0.html</id>
<published>2021-11-20T14:14:44.699Z</published>
<updated>2021-11-20T14:14:36.354Z</updated>
<content type="html"><![CDATA[<h1 id="先模拟一张图片输入:"><a href="#先模拟一张图片输入:" class="headerlink" title="先模拟一张图片输入:"></a>先模拟一张图片输入:</h1><h2 id="数据"><a href="#数据" class="headerlink" title="数据"></a>数据</h2><blockquote><p>X: 1 * N;W: N * L;Y: 1 * L</p><p>其中:1为输入1张图像;N为图像展开像素,即28*28=784;L为分类个数,即10种类别</p></blockquote><blockquote><p>X,MNIST 图像输入数据;W,权重;Y,one-hot</p></blockquote><p>$$<br>\begin{flalign*}</p><p>X =<br> \begin{pmatrix}<br> x_{1}, & x_{2}, & \cdots ,& x_{n}\<br> \end{pmatrix}_{1*N}<br>\text{ }&&</p><p>\end{flalign*}<br>$$</p><blockquote><p>W,权重</p></blockquote><p>$$<br>\begin{flalign*}</p><p>W =<br> \begin{pmatrix}<br> w_{11}, & w_{21}, & \cdots ,& w_{nl}\<br> w_{12}, & w_{22}, & \cdots ,& w_{nl}\<br> \vdots & \vdots & \ddots & \vdots\<br> w_{1n}, & w_{2n}, & \cdots ,& w_{nl}\<br> \end{pmatrix}_{N*L}<br>\text{ }&&</p><p>\end{flalign*}<br>$$</p><blockquote><p>Y,one-hot标签</p></blockquote><p>$$<br>\begin{flalign*}</p><p>Y =<br> \begin{pmatrix}<br> y_{1}, & y_{2}, & \cdots ,& y_{n}\<br> \end{pmatrix}_{1*N}<br>\text{ }&&</p><p>\end{flalign*}<br>$$</p><h2 id="第一步-f-X-W-X-W-B"><a href="#第一步-f-X-W-X-W-B" class="headerlink" title="第一步 f(X,W)=X@W +B"></a>第一步 f(X,W)=X@W +B</h2><p>$$<br>\begin{flalign}<br>f(x,w) =<br> X@W=<br> \begin{pmatrix}<br> f_{1}, & f_{2}, & \cdots &, f_{l}\<br> \end{pmatrix}_{1*L}</p><p>&\text{}&&<br>\end{flalign}<br>$$</p><h2 id="第二步-防止过溢"><a href="#第二步-防止过溢" class="headerlink" title="第二步 防止过溢"></a>第二步 防止过溢</h2><p>$$<br>\begin{flalign}</p><p>\begin{split}</p><p>f & = f - f_{max}=><br> \begin{pmatrix}<br> f_{1}- f_{max},& f_{2}- f_{max},& \cdots &, f_{n}- f_{max}\<br> \end{pmatrix}<em>{1*L}&<br> \<br>&=>eg:<br> \begin{pmatrix}<br> 0 &, -1.2, & \cdots &, -5\<br> \end{pmatrix}</em>{1*L}</p><p>\end{split}&&</p><p>\end{flalign}<br>$$</p><h2 id="第三步-softmax"><a href="#第三步-softmax" class="headerlink" title="第三步 softmax"></a>第三步 softmax</h2><p>$$<br>\begin{flalign}<br>code中:<br>S =<br> \sum_{j=1}^{L}<br> \frac{e^{f_{ij}}}{\sum_{k=1}^{L}e^{f_{ik}}}<br>{\quad\quad}<br>分子是f一行里的一个元素做指数,分母f一行的元素和</p><p>&\text{}&&<br>\end{flalign}<br>$$</p><h2 id="第四步-交叉熵损失"><a href="#第四步-交叉熵损失" class="headerlink" title="第四步 交叉熵损失"></a>第四步 交叉熵损失</h2><p>$$<br>\begin{flalign}<br>C=-<br> \sum_{j=1}^{L}<br> (Y_{j}*lnS_{j})</p><p>&\text{}&&<br>\end{flalign}<br>$$</p><h2 id="第五步-损失函数"><a href="#第五步-损失函数" class="headerlink" title="第五步 损失函数"></a>第五步 损失函数</h2><p>$$<br>\begin{flalign}<br>loss =<br> -C.sum()+\frac{\lambda}{2}*\Vert W \Vert_2^2=<br> (\sum_{j=1}^{L}(Y_{j}*lnS_{j})).sum()+<br> \frac{\lambda}{2}*\Vert W \Vert_2^2</p><p>&\text{}&&<br>\end{flalign}<br>$$</p><h2 id="第六步-求导"><a href="#第六步-求导" class="headerlink" title="第六步 求导"></a>第六步 求导</h2><p>$$<br>\begin{flalign}</p><p>\begin{split}</p><p>& loss =<br> C+\frac{\lambda}{2}<em>\Vert W \Vert_2^2=<br> -Y</em>lnS +\frac{\lambda}{2}<em>\Vert x \Vert_2^2<br> \<br>& C =-Y</em>lnS ;;;;;;;; f(x,w) = XW<br> \<br>& (1)\frac{\partial loss}{\partial w}=<br> \frac{\partial C}{\partial w}+\lambda <em>W<br> \<br>& (2)\frac{\partial C}{\partial w}=<br> \frac{\partial C}{\partial S}</em><br> {\color{red}\frac{\partial S}{\partial f}}*<br> \frac{\partial f}{\partial w}<br> \<br>& (3)\frac{\partial C}{\partial S}=<br> \frac{\partial (-Y*lnS)}{\partial S}=-\frac{Y}{ S}<br> ;;;;;;;;;;;;;;;;;<br> \frac{\partial f}{\partial W}=\frac{\partial (X@W)}{\partial W}=X^T<br> \<br>\end{split}&&</p><p>\end{flalign}<br>$$</p><blockquote><h3 id="核心求导"><a href="#核心求导" class="headerlink" title="核心求导"></a>核心求导</h3></blockquote><p>$$<br>\begin{flalign}</p><p>\begin{split}<br>& f =<br> \begin{pmatrix}<br> f_{1}, & f_{2}, & \cdots ,& f_{l}\<br> \end{pmatrix}<em>{1<em>L}<br>\<br>& S =<br> \begin{pmatrix}<br> e^{f_1}, & e^{f_2}, & \cdots ,& e^{f_l}<br> \<br> \end{pmatrix}_{1</em>L} =<br> \begin{pmatrix}<br> S</em>{1}, & S_{2}, & \cdots ,& S_{l}<br> \<br> \end{pmatrix}_{1*L}<br>\<br>&\frac{\partial S}{\partial f}=<br> (<br> \frac{\partial S_1}{\partial f},<br> \frac{\partial S_2}{\partial f},\cdots,<br> \frac{\partial S_l}{\partial f}<br> )<br>\</p><p>&= (<br> {\color{blue}<br> (\frac{\partial S_1}{\partial f_1}+<br> \frac{\partial S_1}{\partial f_2}+\cdots+<br> \frac{\partial S_1}{\partial f_l})},<br> (\frac{\partial S_2}{\partial f_1}+<br> \frac{\partial S_2}{\partial f_2}+\cdots+<br> \frac{\partial S_2}{\partial f_l}),<br> \cdots,<br> (\frac{\partial S_l}{\partial f_1}+<br> \frac{\partial S_l}{\partial f_2}+\cdots+<br> \frac{\partial S_l}{\partial f_l})<br> )<br>\<br>&<br>令\sum_{k=1}^{L}e^{f_{k}}={e^{f_{1}}+e^{f_{2}}+…+e^{f_{l}}}=h<br>\<br>& 以蓝色部分为例,\frac{\partial S_i}{\partial f_j}可分为2种情况讨论:<br>\<br>& 1)当i=j时,<br>\frac{\partial S_i}{\partial f_j}=<br> \frac{\partial S_i}{\partial f_i}=<br> \frac{\partial \frac{e^{f_i}}{e^{f_1}+e^{f_2}+\cdots+e^{f_l}}}{\partial f_i}=<br> \frac{\partial \frac{e^{f_i}}{h}}{\partial f_i}=<br> \frac{e^{f_i}*h-e^{f_i}<em>\frac{\partial h}{\partial f_i}}{h^2}<br>\<br>& 其中<br>\frac{\partial h}{\partial f_i}=<br> \frac{\partial (e^{f_1}+e^{f_2}+…+e^{f_L})}{\partial f_i} =<br> e^{f_i},<br>\<br>&则\frac{\partial S_i}{\partial f_i}=<br> \frac{e^{f_i}*h-e^{f_i} * \frac{\partial h}{\partial f_i}}{h^2}=<br> \frac{e^{f_i}*h-e^{f_i} * e^{f_i}}{h^2}=<br> S_i-{S_i}^2<br>\<br> & 2)当i!=j时,<br>\frac{\partial S_i}{\partial f_j}=<br> \frac{\partial \frac{e^{f_i}}{e^{f_1}+e^{f_2}+\cdots+e^{f_l}}}{\partial f_j}=<br> \frac{\partial \frac{e^{f_i}}{h}}{\partial f_j}=<br> \frac{-e^{f_i}*\frac{\partial h}{\partial f_j}}{h^2}<br>\<br>& 其中<br>\frac{\partial h}{\partial f_j}=<br> \frac{\partial (e^{f_1}+e^{f_2}+…+e^{f_L})}{\partial f_j} =<br> e^{f_j},<br>\<br>&则\frac{\partial S_i}{\partial f_j}=<br> \frac{-e^{f_i}*\frac{\partial h}{\partial f_j}}{h^2}=<br> \frac{-e^{f_i}*e^{f_i}}{h^2}=<br> -S_i * S_j<br>\<br>& 那么令\frac{\partial S_i}{\partial f}=<br> \frac{\partial Si}{\partial f_{1}}+<br> \frac{\partial Si}{\partial f_{2}}+…+<br> \frac{\partial Si}{\partial f_{l}}=<br> \sum_{j=1}^{L}<br> \frac{\partial S_i}{\partial f_j}=<br> \sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_i)<br>\<br>& 其中,当i=j时=>\Delta_i=1,当i!=j时=>\Delta_i=0</p><p>\end{split}&&</p><p>\end{flalign}<br>$$</p><blockquote><h3 id="代入公式得"><a href="#代入公式得" class="headerlink" title="代入公式得"></a>代入公式得</h3></blockquote><p>$$<br>\begin{flalign}</p><p>\begin{split}</p><p>&\frac{\partial C}{\partial w}=<br> \frac{\partial C}{\partial S}*<br> {\color{red}\frac{\partial S}{\partial f}}*<br> \frac{\partial f}{\partial w}=<br> -\frac{Y}{ S}<em>\sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_i)<br> <em>X^T<br>\<br>& =>\frac{\partial C}{\partial w}=<br> [<br> {\color{green}<br> (-\frac{Y}{S}<em>\sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_1)<br> *X^T )},<br> (-\frac{Y}{S}*\sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_2)<br> <em>X^T ),\cdots,<br> (-\frac{Y}{S}<em>\sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_l)<br> *X^T )<br> ]<br>\<br>&用绿色部分分析:<br>-\frac{Y}{S}*\sum_{j=1}^{L}<br> S_j</em>(\Delta_j-S_1)<br> <em>X^T =<br> -\sum_{j=1}^{L}<br> \frac{Y_j}{S_j}<em>S_j</em>(\Delta_j-S_1)<em>X^T=<br> -\sum_{j=1}^{L}<br> Y_j</em>(\Delta_j-S_1)*X^T<br>\<br>&=<br> -(<br> \sum_{j=1}^{L} Y_j * \Delta_j<br> -<br> \sum_{j=1}^{L} Y_j * S_1<br> )*X^T =<br> -(Y_1-S_1)*X^T<br>\<br>& 归纳可得\frac{\partial C}{\partial w}=<br> [<br> -(Y_1-S_1)*X^T,<br> -(Y_2-S_2)*X^T,\cdots,<br> -(Y_l-S_l)*X^T<br> ]=<br>\ &<br> -[<br> (Y_1-S_1),<br> (Y_2-S_2),\cdots,<br> (Y_l-S_l)<br> ]*X^T=<br> -(Y-S)*X^T=>X^T_{N</em>1} @ (S-Y)_{1*10}=X^T@(S-Y)</p><p>\end{split}&&</p><p>\end{flalign}<br>$$</p><blockquote><h3 id="合并可得"><a href="#合并可得" class="headerlink" title="合并可得"></a>合并可得</h3></blockquote><p>$$<br>\begin{flalign}</p><p>\begin{split}</p><p>& \frac{\partial loss}{\partial w}=<br> \frac{\partial C}{\partial w}+\lambda *W=<br> X^T@(S-Y)+\lambda *W</p><p>\end{split}&&</p><p>\end{flalign}<br>$$</p><h1 id="同理可得多张图片输入"><a href="#同理可得多张图片输入" class="headerlink" title="同理可得多张图片输入"></a>同理可得多张图片输入</h1><p>$$<br>\begin{flalign*}</p><p>X =<br> \begin{pmatrix}<br> x_{11} & x_{12} & \cdots & x_{1n}\<br> x_{21} & x_{22} & \cdots & x_{2n}\<br> \vdots & \vdots & \ddots & \vdots\<br> x_{m1} & x_{m2} & \cdots & x_{mn}\<br> \end{pmatrix}<em>{M*N}<br>;;<br>W=<br> \begin{pmatrix}<br> w</em>{11} & w_{21} & \cdots & w_{l1}\<br> w_{12} & w_{22} & \cdots & w_{l2}\<br> \vdots & \vdots & \ddots & \vdots\<br> w_{1n} & w_{2n} & \cdots & w_{ln}\<br> \end{pmatrix}_{N*L}</p><p>;;<br>Y=<br> \begin{pmatrix}<br> y_{11} & y_{12} & \cdots & y_{1l}\<br> y_{21} & y_{22} & \cdots & y_{2l}\<br> \vdots & \vdots & \ddots & \vdots\<br> y_{mn} & y_{m2} & \cdots & y_{ml}\<br> \end{pmatrix}_{M*L}<br>\text{ }&&</p><p>\end{flalign*}<br>$$</p><blockquote><h3 id="导数公式一样,只是X,W,Y均为矩阵而不是向量了"><a href="#导数公式一样,只是X,W,Y均为矩阵而不是向量了" class="headerlink" title="导数公式一样,只是X,W,Y均为矩阵而不是向量了"></a>导数公式一样,只是X,W,Y均为矩阵而不是向量了</h3></blockquote><p>$$<br>\begin{flalign}</p><p>\begin{split}</p><p>& \frac{\partial loss}{\partial w}=<br> \frac{1}{M} *<br> \frac{\partial C}{\partial w}+\lambda *W=<br> \frac{X^T@(S-Y)}{M} +\lambda *W</p><p>\end{split}&&</p><p>\end{flalign}<br>$$</p>]]></content>
<summary type="html"><h1 id="先模拟一张图片输入:"><a href="#先模拟一张图片输入:" class="headerlink" title="先模拟一张图片输入:"></a>先模拟一张图片输入:</h1><h2 id="数据"><a href="#数据" class="headerli</summary>
</entry>
<entry>
<title>我的测试博客</title>
<link href="https://sunhao-ai.github.io/posts/ae1d00f.html"/>
<id>https://sunhao-ai.github.io/posts/ae1d00f.html</id>
<published>2021-11-20T10:08:12.000Z</published>
<updated>2021-11-20T11:35:01.369Z</updated>
</entry>
<entry>
<title>Hello World</title>
<link href="https://sunhao-ai.github.io/posts/4a17b156.html"/>
<id>https://sunhao-ai.github.io/posts/4a17b156.html</id>
<published>2021-11-20T10:06:46.882Z</published>
<updated>2021-11-20T11:35:01.367Z</updated>
<content type="html"><![CDATA[<p>Welcome to <a href="https://hexo.io/">Hexo</a>! This is your very first post. Check <a href="https://hexo.io/docs/">documentation</a> for more info. If you get any problems when using Hexo, you can find the answer in <a href="https://hexo.io/docs/troubleshooting.html">troubleshooting</a> or you can ask me on <a href="https://github.com/hexojs/hexo/issues">GitHub</a>.</p><h2 id="Quick-Start"><a href="#Quick-Start" class="headerlink" title="Quick Start"></a>Quick Start</h2><h3 id="Create-a-new-post"><a href="#Create-a-new-post" class="headerlink" title="Create a new post"></a>Create a new post</h3><pre class="line-numbers language-bash" data-language="bash"><code class="language-bash">$ hexo new <span class="token string">"My New Post"</span><span aria-hidden="true" class="line-numbers-rows"><span></span></span></code></pre><p>More info: <a href="https://hexo.io/docs/writing.html">Writing</a></p><h3 id="Run-server"><a href="#Run-server" class="headerlink" title="Run server"></a>Run server</h3><pre class="line-numbers language-bash" data-language="bash"><code class="language-bash">$ hexo server<span aria-hidden="true" class="line-numbers-rows"><span></span></span></code></pre><p>More info: <a href="https://hexo.io/docs/server.html">Server</a></p><h3 id="Generate-static-files"><a href="#Generate-static-files" class="headerlink" title="Generate static files"></a>Generate static files</h3><pre class="line-numbers language-bash" data-language="bash"><code class="language-bash">$ hexo generate<span aria-hidden="true" class="line-numbers-rows"><span></span></span></code></pre><p>More info: <a href="https://hexo.io/docs/generating.html">Generating</a></p><h3 id="Deploy-to-remote-sites"><a href="#Deploy-to-remote-sites" class="headerlink" title="Deploy to remote sites"></a>Deploy to remote sites</h3><pre class="line-numbers language-bash" data-language="bash"><code class="language-bash">$ hexo deploy<span aria-hidden="true" class="line-numbers-rows"><span></span></span></code></pre><p>More info: <a href="https://hexo.io/docs/one-command-deployment.html">Deployment</a></p>]]></content>
<summary type="html"><p>Welcome to <a href="https://hexo.io/">Hexo</a>! This is your very first post. Check <a href="https://hexo.io/docs/">documentation</a> for</summary>
</entry>
<entry>
<title>Markdown快速入门小技巧(hexo博客文章--格式用法)</title>
<link href="https://sunhao-ai.github.io/posts/15546.html"/>
<id>https://sunhao-ai.github.io/posts/15546.html</id>
<published>2021-06-21T08:00:00.000Z</published>
<updated>2021-07-28T11:01:26.837Z</updated>
<content type="html"><![CDATA[<p>相遇皆是缘分</p><h1 id="Markdown-的快速入门-后缀是-md"><a href="#Markdown-的快速入门-后缀是-md" class="headerlink" title="Markdown 的快速入门(后缀是 .md)"></a>Markdown 的快速入门(后缀是 .md)</h1><h2 id="快捷键"><a href="#快捷键" class="headerlink" title="快捷键"></a>快捷键</h2><pre class="line-numbers language-html" data-language="html"><code class="language-html">ctrl+shift+1 大纲显示ctrl+/ 源代码显示<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span></span></code></pre><h2 id="代码块:"><a href="#代码块:" class="headerlink" title="代码块:"></a>代码块:</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java">```<span class="token function">java</span><span class="token punctuation">(</span>html等等<span class="token punctuation">)</span> 会自动提示<span aria-hidden="true" class="line-numbers-rows"><span></span></span></code></pre><h2 id="标题"><a href="#标题" class="headerlink" title="标题"></a>标题</h2><pre class="line-numbers language-html" data-language="html"><code class="language-html">#标题1 (大)##标题2###标题3####标题4 (小)以此类推 最高标题6<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span><span></span><span></span><span></span></span></code></pre><h2 id="加粗"><a href="#加粗" class="headerlink" title="加粗"></a>加粗</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//加粗</span><span class="token operator">*</span><span class="token operator">*</span>加粗<span class="token operator">*</span><span class="token operator">*</span><span class="token comment">//代码高亮显示</span><span class="token operator">==</span>高亮<span class="token operator">==</span><span class="token comment">//删除线</span><span class="token operator">~</span><span class="token operator">~</span>删除线<span class="token operator">~</span><span class="token operator">~</span><span class="token comment">//斜体</span> <span class="token operator">*</span>斜体内容<span class="token operator">*</span><span aria-hidden="true" class="line-numbers-rows"><span></span><span></span><span></span><span></span><span></span><span></span><span></span><span></span></span></code></pre><h2 id="引用:"><a href="#引用:" class="headerlink" title="引用:"></a>引用:</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//引用语法</span><span class="token operator">></span>作者:泽<span class="token operator">>></span>作者:泽<span class="token operator">>>></span>作者:泽<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span><span></span><span></span></span></code></pre><blockquote><p>作者:泽</p><blockquote><p>作者:泽</p><blockquote><p>作者:泽</p></blockquote></blockquote></blockquote><h2 id="分割线"><a href="#分割线" class="headerlink" title="分割线"></a>分割线</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//分割线</span><span class="token operator">--</span><span class="token operator">-</span><span class="token operator">*</span><span class="token operator">*</span><span class="token operator">*</span><span aria-hidden="true" class="line-numbers-rows"><span></span><span></span><span></span></span></code></pre><h2 id="图片插入"><a href="#图片插入" class="headerlink" title="图片插入"></a>图片插入</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//在线图片与本地图片</span><span class="token operator">!</span><span class="token punctuation">[</span>照片名子<span class="token punctuation">]</span>(<span class="token operator">/</span>image<span class="token operator">/</span>me<span class="token punctuation">.</span>png)<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span></span></code></pre><p><img src="https://dss2.bdstatic.com/70cFvnSh_Q1YnxGkpoWK1HF6hhy/it/u=3252521864,872614242&fm=26&gp=0.jpg" alt="img"></p><h2 id="超链接"><a href="#超链接" class="headerlink" title="超链接"></a>超链接</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//超链接语法</span><span class="token punctuation">[</span>超链接名字<span class="token punctuation">]</span>(https<span class="token operator">:</span><span class="token operator">/</span><span class="token operator">/</span>gihub<span class="token punctuation">.</span>com<span class="token operator">/</span>yerenping)<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span></span></code></pre><p><a href="https://music.163.com/#/song?id=28892408&market=baiduqk">我的天空</a></p><h2 id="列表"><a href="#列表" class="headerlink" title="列表"></a>列表</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java"><span class="token comment">//无需列表</span><span class="token operator">-</span> 目录<span class="token number">1</span> <span class="token operator">-</span>后加空格<span class="token operator">-</span> 目录<span class="token number">2</span><span class="token operator">-</span> 目录<span class="token number">3</span><span class="token comment">//有序列表</span> <span class="token number">1</span><span class="token operator">+</span><span class="token punctuation">.</span> <span class="token operator">+</span>名称<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span><span></span><span></span><span></span><span></span></span></code></pre><h2 id="表格"><a href="#表格" class="headerlink" title="表格"></a>表格</h2><pre class="line-numbers language-java" data-language="java"><code class="language-java">右键》插入》表格用代码过于复杂不推荐使用<span aria-hidden="true" class="line-numbers-rows"><span></span><span></span></span></code></pre><table><thead><tr><th align="center">姓名</th><th align="center">数字</th><th align="center">语文</th></tr></thead><tbody><tr><td align="center">小王</td><td align="center">85</td><td align="center">21</td></tr><tr><td align="center"></td><td align="center"></td><td align="center"></td></tr><tr><td align="center"></td><td align="center"></td><td align="center"></td></tr></tbody></table>]]></content>
<summary type="html"><p>相遇皆是缘分</p>
<h1 id="Markdown-的快速入门-后缀是-md"><a href="#Markdown-的快速入门-后缀是-md" class="headerlink" title="Markdown 的快速入门(后缀是 .md)"></a>Markdo</summary>
<category term="hexo博客" scheme="https://sunhao-ai.github.io/categories/hexo%E5%8D%9A%E5%AE%A2/"/>
<category term="Markdown" scheme="https://sunhao-ai.github.io/categories/hexo%E5%8D%9A%E5%AE%A2/Markdown/"/>
<category term="hexo博客" scheme="https://sunhao-ai.github.io/tags/hexo%E5%8D%9A%E5%AE%A2/"/>
<category term="Markdown" scheme="https://sunhao-ai.github.io/tags/Markdown/"/>
</entry>
</feed>