-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.cpp
384 lines (334 loc) · 14.8 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#include <iostream>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <OpenCL/opencl.h>
#include "SFML/Graphics.hpp"
//resolution of the window
const int width = 1280;
const int height = 720;
void generate_julia_set(sf::VertexArray& vertexarray, float* results, int precision)
{
for(int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int iterations = results[i * 1280 + j];
if (iterations < precision / 4.0f)
{
vertexarray[i*width + j].position = sf::Vector2f(j, i);
sf::Color color(iterations * 255.0f / (precision / 4.0f), 0, 0);
vertexarray[i*width + j].color = color;
}
else if (iterations < precision / 3.0f)
{
vertexarray[i*width + j].position = sf::Vector2f(j, i);
sf::Color color(0, iterations * 255.0f / (precision / 3.0f), 0);
vertexarray[i*width + j].color = color;
}
else if (iterations < precision / 2.0f)
{
vertexarray[i*width + j].position = sf::Vector2f(j, i);
sf::Color color(0, 0, iterations * 255.0f / (precision / 2.0f));
vertexarray[i*width + j].color = color;
}
else if (iterations < precision)
{
vertexarray[i*width + j].position = sf::Vector2f(j, i);
sf::Color color(0, iterations * 255.0f / precision, iterations * 255.0f / precision);
vertexarray[i*width + j].color = color;
}
}
}
}
#define DATA_SIZE (1280 * 720)
const char *KernelSource = "\n" \
"__kernel void Calculate_Julia_Set( \n" \
" __global float* input, \n" \
" __global float* output, \n" \
" const unsigned int count, int pixel_shift_x, int pixel_shift_y, int precision, float zoom, int x, int y) \n" \
"{ \n" \
" int i = get_global_id(0); \n" \
" int j = i % 1280; int k = i / 1280; \n" \
" float c_real = ((float)x) / zoom - pixel_shift_x / 1280.0f; \n" \
" float c_imag = ((float)y) / zoom - pixel_shift_y / 720.0f; \n" \
" float z_real = ((float)j) / zoom - pixel_shift_x / 1280.0f; \n" \
" float z_imag = ((float)k) / zoom - pixel_shift_y / 720.0f; int iterations = 0; \n" \
" if(i < count) \n" \
" for (int l = 0; l < precision; l++) \n" \
" { \n" \
" float z1_real = z_real * z_real - z_imag * z_imag; float z1_imag = 2 * z_real * z_imag; \n" \
" z_real = z1_real + c_real; z_imag = z1_imag + c_imag; iterations++; \n" \
" if (z_real * z_real + z_imag * z_imag > 4) { break; } \n" \
" } \n" \
" output[i] = iterations; \n" \
"} \n" \
"\n";
////////////////////////////////////////////////////////////////////////////////
int main()
{
int err; // error code returned from api calls
float data[DATA_SIZE]; // original data set given to device
float results[DATA_SIZE]; // results returned from device
unsigned int correct; // number of correct results returned
size_t global; // global domain size for our calculation
size_t local; // local domain size for our calculation
cl_device_id device_id; // compute device id
cl_context context; // compute context
cl_command_queue commands; // compute command queue
cl_program program; // compute program
cl_kernel kernel; // compute kernel
cl_mem input; // device memory used for the input array
cl_mem output; // device memory used for the output array
//fill dataset with numbers 0 through i
int i = 0;
unsigned int count = DATA_SIZE;
for(i = 0; i < count; i++)
data[i] = i;
// Connect to a compute device
int gpu = 1;
err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to create a device group!\n");
return EXIT_FAILURE;
}
// Create a compute context
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context)
{
printf("Error: Failed to create a compute context!\n");
return EXIT_FAILURE;
}
// Create a command commands
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands)
{
printf("Error: Failed to create a command commands!\n");
return EXIT_FAILURE;
}
// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err);
if (!program)
{
printf("Error: Failed to create compute program!\n");
return EXIT_FAILURE;
}
// Build the program executable
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
size_t len;
char buffer[2048];
printf("Error: Failed to build program executable!\n");
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
printf("%s\n", buffer);
exit(1);
}
// Create the compute kernel
kernel = clCreateKernel(program, "Calculate_Julia_Set", &err);
if (!kernel || err != CL_SUCCESS)
{
printf("Error: Failed to create compute kernel!\n");
exit(1);
}
// Create the input and output arrays in device memory for the calculation
input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, NULL);
output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, NULL);
if (!input || !output)
{
printf("Error: Failed to allocate device memory!\n");
exit(1);
}
// Write our data set into the input array in device memory
err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to write to source array!\n");
exit(1);
}
sf::RenderWindow window(sf::VideoMode(width, height), "Julia Set Plotter");
window.setFramerateLimit(30);
sf::VertexArray pointmap(sf::Points, width * height);
//set up viewing parameters
float zoom = 275.0f;
int precision = 300;
int x_shift = width * 2.5;
int y_shift = height * 1.2;
// Get the maximum work group size for executing the kernel on the device
err = clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to retrieve kernel work group info! %d\n", err);
exit(1);
}
for (int i = 0; i < width*height; i++)
{
pointmap[i].color = sf::Color::Black;
}
// Set the arguments to the compute kernel
err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to write to source array!\n");
exit(1);
}
int mouse_x = sf::Mouse::getPosition().x;
int mouse_y = sf::Mouse::getPosition().y;
err = 0;
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
err |= clSetKernelArg(kernel, 3, sizeof(int), &x_shift);
err |= clSetKernelArg(kernel, 4, sizeof(int), &y_shift);
err |= clSetKernelArg(kernel, 5, sizeof(int), &precision);
err |= clSetKernelArg(kernel, 6, sizeof(float), &zoom);
err |= clSetKernelArg(kernel, 7, sizeof(int), &mouse_x);
err |= clSetKernelArg(kernel, 8, sizeof(float), &mouse_y);
if (err != CL_SUCCESS)
{
printf("Error: Failed to set kernel arguments! %d\n", err);
exit(1);
}
// Execute the kernel over the entire range of our 1d input data set
// using the maximum number of work group items for this device
global = count;
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
if (err)
{
printf("Error: Failed to execute kernel!\n");
return EXIT_FAILURE;
}
// Wait for the command commands to get serviced before reading back results
clFinish(commands);
// Read back the results from the device
err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
printf("Error: Failed to read output array! %d\n", err);
exit(1);
}
generate_julia_set(pointmap, results, precision);
std::cout << "Precision: " << precision << std::endl;
while (window.isOpen())
{
sf::Event event;
while (window.pollEvent(event))
{
if (event.type == sf::Event::Closed)
window.close();
}
mouse_x = sf::Mouse::getPosition().x;
mouse_y = sf::Mouse::getPosition().y;
//clear the pointmap
for (int i = 0; i < width*height; i++)
{
pointmap[i].color = sf::Color::Black;
}
// Set the arguments to the compute kernel
err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to write to source array!\n");
exit(1);
}
err = 0;
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
err |= clSetKernelArg(kernel, 3, sizeof(int), &x_shift);
err |= clSetKernelArg(kernel, 4, sizeof(int), &y_shift);
err |= clSetKernelArg(kernel, 5, sizeof(int), &precision);
err |= clSetKernelArg(kernel, 6, sizeof(float), &zoom);
err |= clSetKernelArg(kernel, 7, sizeof(int), &mouse_x);
err |= clSetKernelArg(kernel, 8, sizeof(float), &mouse_y);
if (err != CL_SUCCESS)
{
printf("Error: Failed to set kernel arguments! %d\n", err);
exit(1);
}
// Execute the kernel over the entire range of our 1d input data set
// using the maximum number of work group items for this device
//
global = count;
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
if (err)
{
printf("Error: Failed to execute kernel!\n");
return EXIT_FAILURE;
}
// Wait for the command commands to get serviced before reading back results
clFinish(commands);
// Read back the results from the device
err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
printf("Error: Failed to read output array! %d\n", err);
exit(1);
}
generate_julia_set(pointmap, results, precision);
if (sf::Keyboard::isKeyPressed(sf::Keyboard::P))
{
std::cout << "manually enter precision, or enter -1 to keep current precision: " << std::endl;
int new_precision = 0;
std::cin >> new_precision;
if (new_precision != -1)
precision = new_precision;
for (int i = 0; i < width*height; i++)
{
pointmap[i].color = sf::Color::Black;
}
// Set the arguments to the compute kernel
err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to write to source array!\n");
exit(1);
}
err = 0;
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
err |= clSetKernelArg(kernel, 3, sizeof(int), &x_shift);
err |= clSetKernelArg(kernel, 4, sizeof(int), &y_shift);
err |= clSetKernelArg(kernel, 5, sizeof(int), &precision);
err |= clSetKernelArg(kernel, 6, sizeof(float), &zoom);
err |= clSetKernelArg(kernel, 7, sizeof(int), &mouse_x);
err |= clSetKernelArg(kernel, 8, sizeof(float), &mouse_y);
if (err != CL_SUCCESS)
{
printf("Error: Failed to set kernel arguments! %d\n", err);
exit(1);
}
// Execute the kernel over the entire range of our 1d input data set
// using the maximum number of work group items for this device
global = count;
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
if (err)
{
printf("Error: Failed to execute kernel!\n");
return EXIT_FAILURE;
}
// Wait for the command commands to get serviced before reading back results
clFinish(commands);
// Read back the results from the device
err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
printf("Error: Failed to read output array! %d\n", err);
exit(1);
}
generate_julia_set(pointmap, results, precision);
std::cout << "Precision: " << precision << std::endl;
}
window.clear();
window.draw(pointmap);
window.display();
}
return 0;
}