-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpix2pix.py
293 lines (237 loc) · 11.6 KB
/
pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import os
import shutil
from tqdm import tqdm
import torch.nn as nn
from Models.unet import UNet, Logs as G_Logs
from Models.patchgan import Logs as D_Logs
from Models.patchgan import PathGan
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
PRINTLOG = False
class Logs:
def __init__(self, printlogs=False):
global PRINTLOG
PRINTLOG = printlogs
def __str__(self):
return f"Printing Pix2Pix logs : {PRINTLOG}"
def check_dir(name):
if os.path.exists(name) is False:
os.makedirs(name)
def init_weights(net, init_type='normal', scaling=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv')) != -1:
torch.nn.init.normal_(m.weight.data, 0.0, scaling)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, scaling)
torch.nn.init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
def get_avg(List):
return sum(List)/len(List)
class Pix2Pix(nn.Module):
def __init__(self, in_channels, out_channels, device, learning_rate=0.0002, save_after=5, LOAD_MODEL=None):
super().__init__()
self.init_params(in_channels, out_channels,
learning_rate, device, LOAD_MODEL)
self.init_logs(save_after)
def init_params(self, in_channels, out_channels, learning_rate, device, LOAD_MODEL):
self.generator = UNet(in_channels).float().to(device)
self.discriminator = PathGan(
in_channels + out_channels).float().to(device)
self.gen_opt = torch.optim.Adam(
self.generator.parameters(), lr=learning_rate)
self.disc_opt = torch.optim.Adam(
self.discriminator.parameters(), lr=learning_rate)
if LOAD_MODEL:
self.load_model(LOAD_MODEL)
else:
init_weights(self.generator)
init_weights(self.discriminator)
self.adversarial_criterion = nn.BCEWithLogitsLoss()
self.recon_criterion = nn.L1Loss()
self.device = device
self.step = 0
def init_logs(self, save_after):
self.VAL_LOSS = []
self.GAN_LOSS = []
self.DIS_LOSS = []
self.GAN_LOSS_VAL = []
self.DIS_LOSS_VAL = []
self.writer = SummaryWriter(
'/content/logs') if os.path.isdir('/content/logs') else SummaryWriter('logs')
self.create_checkpoint_after = save_after
self.max_checkpoints_capacity = 3
self.max_img_log_capacity = 20
self.save_path = 'Checkpoint/'
self.img_dir = 'Img_Dir/'
check_dir(self.img_dir)
def train_discriminator(self, img, output, real_target, fake_target):
if PRINTLOG:
print(
f"Pix2Pix ==> Traning Discriminator : Img {img.shape}, Output {output.shape}")
if PRINTLOG:
print(f"Pix2Pix ==> Generating Fake Images : Img {img.shape}")
fake_images = self.generator(img)
if PRINTLOG:
print(
f"Pix2Pix ==> Traning Discriminator on Fake Images : Fake img {fake_images.shape}, Output {output.shape}")
pred_descriminator = self.discriminator(fake_images, output)
fake_loss = self.discriminator_loss(pred_descriminator, fake_target)
if PRINTLOG:
print(
f"Pix2Pix ==> Traning Discriminator on Real Images : Real img {img.shape}, Output {output.shape}")
pred_descriminator = self.discriminator(img, output)
real_loss = self.discriminator_loss(pred_descriminator, real_target)
loss = (fake_loss + real_loss)/2
self.DIS_LOSS.append(float(loss))
self.writer.add_scalar('Model/D Loss', loss, self.step)
self.writer.add_scalar('Discriminator/Real Loss', real_loss, self.step)
self.writer.add_scalar('Discriminator/Fake Loss', fake_loss, self.step)
return loss
def train_generator(self, img, output, real_target):
if PRINTLOG:
print(
f"Pix2Pix ==> Traning Generator : Img {img.shape}, Output {output.shape}")
fake_img = self.generator(img)
if PRINTLOG:
print(
f"Pix2Pix ==> Checking Generated img on Discriminator : Fake Img {fake_img.shape}, Output {output.shape}")
G = self.discriminator(fake_img, output)
gan_loss = self.generator_loss(fake_img, output, G, real_target)
self.GAN_LOSS.append(float(gan_loss))
self.writer.add_scalar('Model/G Loss', gan_loss, self.step)
return gan_loss
def discriminator_loss(self, output, label):
return self.adversarial_criterion(output, label)
def generator_loss(self, generated_output, target, discriminator_output, real_target):
if PRINTLOG:
print(
f"Pix2Pix ==> Generator loss : Fake Img {generated_output.shape}, Target {target.shape}, Discrim Output {discriminator_output.shape}, Real Output {real_target.shape}")
gen_loss = self.adversarial_criterion(
discriminator_output, real_target)
if PRINTLOG:
print(f"Pix2Pix ==> : Generator loss Recreation loss {gen_loss}")
recreation_loss = self.recon_criterion(generated_output, target)
if PRINTLOG:
print(
f"Pix2Pix ==> : Recreation Loss {recreation_loss}, Adverse loss {gen_loss.shape}")
self.writer.add_scalar(
'Generator/Adversarial Loss', gen_loss, self.step)
self.writer.add_scalar('Generator/Recreation Loss',
recreation_loss, self.step)
return gen_loss + (100 * recreation_loss)
def validation(self, Input, target, real_target, fake_target):
generated_img = self.generator(Input)
validation_by_discriminator = self.discriminator(generated_img, target)
generator_loss = self.generator_loss(
generated_img, target, validation_by_discriminator, real_target)
discriminator_loss = self.discriminator_loss(
validation_by_discriminator, fake_target)
return (generator_loss, discriminator_loss)
def create_checkpoint(self, epochs, Method, loss_gen, loss_dicrim):
check_dir(self.save_path)
if len(next(os.walk(self.save_path))[2]) >= 3:
dirs = sorted(list(next(os.walk(self.save_path))
[2]), key=lambda x: int(x[5:-4]))
os.remove(self.save_path + dirs[0])
path = self.save_path + Method
torch.save({
'generator_model': self.generator.state_dict(),
'disciminator_model': self.discriminator.state_dict(),
'generator_loss': loss_gen,
'disciminator_loss': loss_dicrim,
'generator_optim': self.gen_opt.state_dict(),
'disciminator_optim': self.disc_opt.state_dict(),
'epoch': str(epochs)
}, path + '.pt')
print(f"\nPix2Pix {Method} Saved!")
def load_model(self, LOAD_MODEL):
if os.path.exists(LOAD_MODEL):
dirs = sorted(list(next(os.walk(self.save_path))
[2]), key=lambda x: int(x[5:-4]))
checkpoint = torch.load(self.save_path + dirs[-1])
self.generator.load_state_dict(checkpoint['generator_model'])
self.discriminator.load_state_dict(
checkpoint['disciminator_model'])
self.gen_opt.load_state_dict(checkpoint['generator_optim'])
self.disc_opt.load_state_dict(checkpoint['disciminator_optim'])
else:
raise Exception("Model not found!!!")
def save_images(self):
dirs = sorted(list(next(os.walk(self.img_dir))
[2]), key=lambda x: int(x[:-4]))
if len(dirs) >= self.max_img_log_capacity:
os.remove(self.img_dir + dirs[0])
def train(self, train_loader, val_loader, epochs, patch_gan_output=16):
for epoch in (range(epochs)):
try:
for data in tqdm(train_loader):
MR, CT = data['MR'].to(self.device).float(
), data['CT'].to(self.device).float()
fake_target = torch.autograd.Variable(torch.zeros(
MR.size(0), 1, patch_gan_output, patch_gan_output).to(self.device))
real_target = torch.autograd.Variable(torch.ones(
MR.size(0), 1, patch_gan_output, patch_gan_output).to(self.device))
if PRINTLOG:
print(
f"Pix2Pix ==> MR {MR.shape}, CT {CT.shape}, Realtarget {real_target.shape}, Faketarget {fake_target.shape}")
self.disc_opt.zero_grad()
D_loss = self.train_discriminator(
MR, CT, real_target, fake_target)
D_loss.backward()
self.disc_opt.step()
self.gen_opt.zero_grad()
gen_loss = self.train_generator(MR, CT, real_target)
gen_loss.backward()
self.gen_opt.step()
self.step += 1
del fake_target
del real_target
del D_loss
del gen_loss
device = self.device
for data in tqdm(val_loader):
MR, CT = data['MR'].to(device).float(
), data['CT'].to(device).float()
fake_target = torch.autograd.Variable(torch.zeros(
MR.size(0), 1, patch_gan_output, patch_gan_output).to(device))
real_target = torch.autograd.Variable(torch.ones(
MR.size(0), 1, patch_gan_output, patch_gan_output).to(device))
g_loss, d_loss = self.validation(
MR, CT, real_target, fake_target)
g_loss, d_loss = float(g_loss), float(d_loss)
self.GAN_LOSS_VAL.append(g_loss)
self.DIS_LOSS_VAL.append(d_loss)
del fake_target
del real_target
del g_loss
del d_loss
img = self.generator(MR)
fig, ax = plt.subplots(1, 3, figsize=(30, 10))
ax[0].imshow(MR[0, 0, :, :].cpu().numpy(), cmap='gray')
ax[1].imshow(CT[0, 0, :, :].cpu().numpy(), cmap='gray')
ax[2].imshow(img[0, 0, :, :].cpu(
).detach().numpy(), cmap='gray')
del img
plt.show()
self.save_images()
fig.savefig(self.img_dir + str(epoch) + '.png')
self.writer.add_scalars('Episode/Generator', {'Gen_Train_Loss': get_avg(self.GAN_LOSS),
'Gen_Valid_Loss': get_avg(self.GAN_LOSS_VAL)}, epoch)
self.writer.add_scalars('Episode/Discriminator', {'Dis_Train_Loss': get_avg(self.DIS_LOSS),
'DIS_Valid_Loss': get_avg(self.DIS_LOSS_VAL)}, epoch)
print(
f'Epoch {epoch}: Generator Loss {get_avg(self.GAN_LOSS)}, Discriminator Loss {get_avg(self.DIS_LOSS)}')
if (epoch+1) % self.create_checkpoint_after == 0:
METHOD = f"epoch{epoch}_"
self.create_checkpoint(epoch, METHOD, get_avg(
self.GAN_LOSS), get_avg(self.DIS_LOSS))
except Exception as e:
print("Error : ", e)
METHOD = f"epoch{epoch}_"
self.create_checkpoint(epoch, METHOD, get_avg(
self.GAN_LOSS), get_avg(self.DIS_LOSS))
raise Exception("Error ! in train loop")