🎮 No game no AI(life) -- Ultimate AI solutions for Tic-tac-toe game | 终极人工智能井字棋解决方案
A comprehensive collection of AI algorithms playing Tic-tac-toe, showcasing different approaches to achieve optimal gameplay. All implementations guarantee unbeatable AI performance.
-
🌳 MCTS (Monte Carlo Tree Search) implementation
- Pure MCTS strategy
- High winning rate with optimal decision making
-
🧠 Q-Learning Implementation
- Reinforcement learning approach
- State-action value based decision making
-
🔍 A Search Implementation*
- Heuristic search algorithm
- Optimal path finding strategy
-
🚀 Hybrid MCTS + Q-Learning
- Combined strength of both algorithms
- Optional Beam Search enhancement
- Better performance in complex situations
-
🤖 Self-Play Training
- Most advanced implementation
- AI learns from playing against itself
- Demonstrates emergent strategies
All implementations achieve near-perfect gameplay, with the Self-Play version showing exceptional adaptability and strategic depth.
一个完整的井字棋AI算法集合,展示了不同的人工智能方法来实现最优对战策略。所有实现都保证AI具有无法战胜的游戏水平。
-
🌳 MCTS蒙特卡洛树搜索实现
- 纯MCTS策略
- 具有最优决策的高胜率
-
🧠 Q-Learning强化学习实现
- 强化学习方法
- 基于状态-动作值的决策制定
-
🔍 A*搜索算法实现
- 启发式搜索算法
- 最优路径寻找策略
-
🚀 混合MCTS + Q-Learning实现
- 结合两种算法的优势
- 可选择性集成Beam Search
- 在复杂情况下表现更佳
-
🤖 自我对弈训练版本
- 最先进的实现方式
- AI通过自我对弈学习
- 展现出新颖的策略
所有实现都达到了接近完美的游戏水平,其中自我对弈版本展现出特别出色的适应性和策略深度。
![License: MIT][]![Python Version][]![Build Status][]
git clone https://github.com/StarLight1212/self_play.git
cd self_play
pip install -r requirements.txt
python xxx_script.py
This project is licensed under the MIT License - see the LICENSE file for details.