-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathlogistic_regression.py
163 lines (131 loc) · 5.06 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import argparse
import pickle
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from torchvision import datasets, models, transforms
from modules.transformations import TransformsSimCLR
from process_features import get_features, create_data_loaders_from_arrays
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", required=True, type=str, help="Path to pre-trained model (e.g. model-10.pt)")
parser.add_argument("--image_size", default=224, type=int, help="Image size")
parser.add_argument(
"--learning_rate", default=3e-3, type=float, help="Initial learning rate."
)
parser.add_argument(
"--batch_size", default=768, type=int, help="Batch size for training."
)
parser.add_argument(
"--num_epochs", default=300, type=int, help="Number of epochs to train for."
)
parser.add_argument(
"--resnet_version", default="resnet18", type=str, help="ResNet version."
)
parser.add_argument(
"--checkpoint_epochs",
default=10,
type=int,
help="Number of epochs between checkpoints/summaries.",
)
parser.add_argument(
"--dataset_dir",
default="./datasets",
type=str,
help="Directory where dataset is stored.",
)
parser.add_argument(
"--num_workers",
default=8,
type=int,
help="Number of data loading workers (caution with nodes!)",
)
args = parser.parse_args()
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# data loaders
train_dataset = datasets.CIFAR10(
args.dataset_dir,
download=True,
transform=TransformsSimCLR(size=args.image_size).test_transform,
)
test_dataset = datasets.CIFAR10(
args.dataset_dir,
train=False,
download=True,
transform=TransformsSimCLR(size=args.image_size).test_transform,
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
drop_last=True,
num_workers=args.num_workers,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size,
drop_last=True,
num_workers=args.num_workers,
)
# pre-trained model
if args.resnet_version == "resnet18":
resnet = models.resnet18(pretrained=False)
elif args.resnet_version == "resnet50":
resnet = models.resnet50(pretrained=False)
else:
raise NotImplementedError("ResNet not implemented")
resnet.load_state_dict(torch.load(args.model_path, map_location=device))
resnet = resnet.to(device)
num_features = list(resnet.children())[-1].in_features
# throw away fc layer
resnet = nn.Sequential(*list(resnet.children())[:-1])
n_classes = 10 # CIFAR-10 has 10 classes
# fine-tune model
logreg = nn.Sequential(nn.Linear(num_features, n_classes))
logreg = logreg.to(device)
# loss / optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=logreg.parameters(), lr=args.learning_rate)
# compute features (only needs to be done once, since it does not backprop during fine-tuning)
if not os.path.exists("features.p"):
print("### Creating features from pre-trained model ###")
(train_X, train_y, test_X, test_y) = get_features(
resnet, train_loader, test_loader, device
)
pickle.dump(
(train_X, train_y, test_X, test_y), open("features.p", "wb"), protocol=4
)
else:
print("### Loading features ###")
(train_X, train_y, test_X, test_y) = pickle.load(open("features.p", "rb"))
train_loader, test_loader = create_data_loaders_from_arrays(
train_X, train_y, test_X, test_y, 2048
)
# Train fine-tuned model
for epoch in range(args.num_epochs):
metrics = defaultdict(list)
for step, (h, y) in enumerate(train_loader):
h = h.to(device)
y = y.to(device)
outputs = logreg(h)
loss = criterion(outputs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# calculate accuracy and save metrics
accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
metrics["Loss/train"].append(loss.item())
metrics["Accuracy/train"].append(accuracy)
print(f"Epoch [{epoch}/{args.num_epochs}]: " + "\t".join([f"{k}: {np.array(v).mean()}" for k, v in metrics.items()]))
# Test fine-tuned model
print("### Calculating final testing performance ###")
metrics = defaultdict(list)
for step, (h, y) in enumerate(test_loader):
h = h.to(device)
y = y.to(device)
outputs = logreg(h)
# calculate accuracy and save metrics
accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
metrics["Accuracy/test"].append(accuracy)
print(f"Final test performance: " + "\t".join([f"{k}: {np.array(v).mean()}" for k, v in metrics.items()]))