-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_predict.py
273 lines (253 loc) · 11.6 KB
/
transformer_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#from multiprocessing import reduction
#import sched
from timm.scheduler.cosine_lr import CosineLRScheduler
from read_npy import create_dataloaders
import os
import sys
print(sys.path)
# sys.path.append(os.getcwd())
# sys.path.append(os.getcwd()+'/TimeSformer')
from TimeSformer.vit import VisionTransformer_conv_aug,TimeSformer
from pathlib import Path
import torch
from torchsummary import summary
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import matplotlib.pyplot as plt
import torchvision
import numpy as np
#from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
from skimage.transform import resize
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def embed_dim_by_img(img,num_heads,emb_mult):
emb_dim = img*emb_mult
head_det = emb_dim%num_heads
if head_det!=0:
emb_dim=emb_dim-head_det+num_heads
return emb_dim
def count_patch_size(imgsize):
patch = imgsize**0.5
if imgsize%patch==0:
return patch
else:
while imgsize%patch!=0:
patch = int(patch)-1
return patch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
accumulation_steps = 1
lr_max = 0.0005
lr_min = 0.000001
epochs = 1
predict_period = 52
in_period = 104
batch_size = 1
num_heads=12
emb_mult=5
place='kara'
PARALLEL = False
from_ymd_train=[1979, 1, 1]
to_ymd_train=[2012,1,1]
from_ymd_test=[2012,1,2]
to_ymd_test=[2024, 1, 1]
load_predtrain = True
depth = 11
LOSS = 'MAE'
predtreain_path = r'/projects/Surrogates/OLD_CONVTimeSformer_aug_simg_predtrain_True_LOSS_MAE_depth_11_num_heads_12_emb_dim_600/model_weights_in_per_104_pred_per_52_bs_1__dates_1979to_2012_stride7_sigmoid'
#[2012,1,1] to [2012,1,1] [2020,1,1]
stride = 7
resize_img = None
if resize_img is not None:
mask = np.load(fr'coastline_masks/{place}_mask.npy')
mask = resize(mask, (resize_img[0], resize_img[1]), anti_aliasing=False)
else:
mask = np.load(fr'coastline_masks/{place}_mask.npy')
# dataloader_train, img_sizes = create_dataloaders(path_to_dir=f'Ice/{place}',
# batch_size=batch_size,
# in_period=in_period,
# predict_period=predict_period,
# stride=stride,
# test_end=None,
# from_ymd=from_ymd_train,
# to_ymd=to_ymd_train,
# pad=False,
# train_test_split=None,
# resize_img=resize_img)
dataloader_test, img_sizes = create_dataloaders(path_to_dir=f'{place}',
batch_size=1,
in_period=in_period,
predict_period=predict_period,
stride=stride,
test_end=None,
from_ymd=from_ymd_test,
to_ymd=to_ymd_test,
pad=False,
train_test_split=None,
resize_img=resize_img,
shift=predict_period)
#train_len = dataloader_train.__len__()
test_len = dataloader_test.__len__()
if img_sizes[1]>img_sizes[0]:
img_sizes=(img_sizes[1],img_sizes[0])
if img_sizes[1]!=img_sizes[0]:
patch_size1 = count_patch_size(img_sizes[0]) #int(img_sizes[0]/(img_sizes[0]*2)**0.5)
patch_size2 = count_patch_size(img_sizes[1])
patch_size=[patch_size1,patch_size2]#int(img_sizes[1]/(img_sizes[1]*2)**0.5)
else:
patch_size = int(img_sizes[0]/(img_sizes[0]*2)**0.5)
embed_dim = embed_dim_by_img(img_sizes[1],num_heads,emb_mult)
dropout=0.1
attn_drop_rate=0.1
#Loss f-n
####################
NAME = f'test_SHIFT__ep80_{load_predtrain}_LOSS_{LOSS}dropout{dropout}_depth_{depth}attn_drop_rate{attn_drop_rate}_num_heads_{num_heads}_emb_dim_{embed_dim}'#last num_heads=6
####################
if LOSS=="MAE":
loss_l1 = torch.nn.L1Loss(reduction='none')
#loss_sim = SSIM(data_range=1, size_average=True, channel=predict_period)
# def loss_fn(x,y):
# out = loss_l1(x,y)
# return out
def loss_fn(x,y):
out = loss_l1(x,y)# + 0.05*(1-loss_sim(x,y))
return out
#Model
#Optimizer
if PARALLEL:
model = TimeSformer(batch_size=batch_size, output_size=[img_sizes[0], img_sizes[1]], img_size=img_sizes[0],embed_dim=embed_dim,
num_frames=4, attention_type='divided_space_time', pretrained_model=False, in_chans=1, out_chans=predict_period,
patch_size=patch_size,num_heads=num_heads,in_periods=in_period,place=place,depth=depth,emb_mult=emb_mult)
if load_predtrain:
model_dict_pred_train = torch.load(predtreain_path,map_location=torch.device('cpu'))
model_dict = model.state_dict()
dict_matched = [i for i,k in zip(model_dict_pred_train,model_dict) if model_dict_pred_train[i].shape==model_dict[k].shape]
test_dict = {i:model_dict_pred_train[i] for i in dict_matched}
model_dict.update(test_dict)
model.load_state_dict(model_dict)
# pretrained_dict = {k: v for k, v in model_dict_pred_train.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# model.load_state_dict(pretrained_dict)
model = torch.nn.DataParallel(model)
model.to(device)
else:
model = TimeSformer(batch_size=batch_size, output_size=[img_sizes[0], img_sizes[1]], img_size=img_sizes[0],embed_dim=embed_dim,
num_frames=4, attention_type='divided_space_time', pretrained_model=False, in_chans=1, out_chans=predict_period,
patch_size=patch_size,num_heads=num_heads,in_periods=in_period,place=place,depth=depth,emb_mult=emb_mult
).to(device)
if load_predtrain:
model_dict_pred_train = torch.load(predtreain_path,map_location=torch.device(device))
# model_dict = model.state_dict()
# dict_matched = [i for i,k in zip(model_dict_pred_train,model_dict) if model_dict_pred_train[i].shape==model_dict[k].shape]
# test_dict = {i:model_dict_pred_train[i] for i in dict_matched}
# model_dict.update(test_dict)
model.load_state_dict(model_dict_pred_train)
#optimizer = torch.optim.AdamW(model.parameters(), lr=lr_max, betas=(0.9, 0.98), eps=1e-9)
weight_decay = 0.001
optimizer = torch.optim.AdamW(model.parameters(), lr=lr_max, betas=(0.9, 0.98), eps=1e-9)#Weight decay
# optimizer_sch = CosineLRScheduler(optimizer, t_initial=train_len*epochs//2, lr_min=lr_min,
# warmup_t=train_len*1,cycle_limit=1.0, warmup_lr_init=lr_min, warmup_prefix=False, t_in_epochs=True,
# noise_range_t=None, noise_pct=0.67, noise_std=1.0,
# noise_seed=42, initialize=True)
optimizer_sch = CosineLRScheduler(optimizer, t_initial=120, lr_min=lr_min*10,
warmup_t=5,cycle_limit=1.0, warmup_lr_init=lr_min, warmup_prefix=False, t_in_epochs=True,
noise_range_t=None, noise_pct=0.67, noise_std=1.0,
noise_seed=42, initialize=True)
# (batch x channels x frames x height x width)
#dummy_video = torch.randn(1, 4, 452, 452)
writer = SummaryWriter(f'writer_test/{NAME}_weight_decay{weight_decay}_lr{lr_min}_{lr_max}_in_per_{in_period}_pred_per_{predict_period}_bs_{batch_size}_dates_{from_ymd_train[0]}to_{to_ymd_train[0]}_stride_{stride}sigmoid_accum_gr{accumulation_steps}')
params_dict = {
'attn_drop_rate':attn_drop_rate,
'dropout':dropout,
'device' : device,
'accumulation_steps' : accumulation_steps,
'lr_max' : lr_max,
'lr_min' :lr_min,
'epochs' :epochs,
'predict_period' :predict_period,
'in_period' : in_period,
'batch_size' : batch_size,
'num_heads':num_heads,
'emb_mult':emb_mult,
'place':place,
'PARALLEL' : PARALLEL,
'from_ymd_train':from_ymd_train,
'to_ymd_train':to_ymd_train,
'from_ymd_test':from_ymd_test,
'to_ymd_test':to_ymd_test,
'depth' : depth,
'load_predtrain' : load_predtrain,
'predtreain_path' :predtreain_path,
'LOSS':LOSS,
'stride':stride,
'weight_decay':weight_decay
}
[writer.add_text(k,str(params_dict[k])) for k in params_dict.keys()]
#writer.add_hparams(params_dict,metric_d)
img=0
step = 0
ep = 0
test_step=0
current_step = 0
if not os.path.isdir(f'{NAME}'):
os.mkdir(f'{NAME}')
for epoch in tqdm(range(epochs)):
# writer.add_scalar('Lr',optimizer.param_groups[0]['lr'],ep)
# ep+=1
# model.train()
# #TRAIN
# for i,batch in enumerate(dataloader_train):
# print(i)
# X,y,x_d,y_d=batch
# step+=1
# #current_step +=1
# X = X.to(device)
# y = y.squeeze(1).to(device)
# outputs = model(X)
# loss = loss_fn(outputs,y)/ accumulation_steps
# writer.add_scalar('Loss_train',loss.item()*accumulation_steps,step)
# loss.backward()
# if (i + 1) % accumulation_steps == 0:
# optimizer.step()
# optimizer.zero_grad()
# optimizer_sch.step(ep)
# optimizer.zero_grad()
# del outputs,X
# torch.cuda.empty_cache()
#writer.add_scalar('GPU',torch.cuda.memory_summary(device),ep)
#TEST
model.eval()
with torch.no_grad():
tt = 1
for i,batch in enumerate(dataloader_test):
X,y,x_d,y_d = batch
print(y_d)
test_step+=1
#current_step +=1
X = X.to(device)
y = y.squeeze(1).to(device)
outputs = model(X)
loss =loss_fn(outputs,y)
loss_masked =loss_fn(outputs*torch.tensor(np.float32(mask)).to(device),y)
imgs=np.absolute(outputs.detach().cpu().numpy()-y.detach().cpu().numpy())
writer.add_images('Loss_masks', np.expand_dims(imgs[0],axis=1), i)
writer.add_images('Ground_truth', np.expand_dims(y.detach().cpu().numpy()[0],axis=1), i)
writer.add_images('Predicts', np.expand_dims(outputs.detach().cpu().numpy()[0],axis=1), i)
#img+=0.005
lossses = [[i,n.item()] for i,n in enumerate(loss.mean(dim=-1).mean(dim=-1)[0])]
[writer.add_scalar('Loss_test',n,(time+tt)) for time,n in lossses]
tt+=lossses[-1][0]
writer.add_scalar('Masked_loss_test',loss_masked.mean(dim=-1).mean(dim=-1).mean(dim=-1).item(),test_step)
# del outputs
# torch.cuda.empty_cache()
# if ep%30==0:
# if PARALLEL:
# torch.save(model.module.state_dict(), f'Ice//{NAME}/Module_model_weights_in_per_{in_period}_pred_per_{predict_period}_bs_{batch_size}__dates_{from_ymd_train[0]}to_{to_ymd_train[0]}_stride{stride}_sigmoid')
# else:
# torch.save(model.state_dict(), f'Ice//{NAME}/model_weights_in_per_{in_period}_pred_per_{predict_period}_bs_{batch_size}__dates_{from_ymd_train[0]}to_{to_ymd_train[0]}_stride{stride}_sigmoid')
# if PARALLEL:
# torch.save(model.module.state_dict(), f'Ice//{NAME}/Module_model_weights_in_per_{in_period}_pred_per_{predict_period}_bs_{batch_size}__dates_{from_ymd_train[0]}to_{to_ymd_train[0]}_stride{stride}_sigmoid')
# else:
# torch.save(model.state_dict(), f'Ice//{NAME}/model_weights_in_per_{in_period}_pred_per_{predict_period}_bs_{batch_size}__dates_{from_ymd_train[0]}to_{to_ymd_train[0]}_stride{stride}_sigmoid')
# for train in dataloaders[0]:
# predd = model(train[0].to('cuda'))
# print(train[0].shape, train[1].shape)