-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
92 lines (77 loc) · 3.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.keras.layers as layers
import tensorflow.keras.models as models
import tensorflow.keras.optimizers as optimizers
ImageDataGenerator = tf.keras.preprocessing.image.ImageDataGenerator
base_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data')
split_dir = os.path.join(base_dir, "SplitData")
input_shape = (500, 500, 3)
# gpus = tf.config.experimental.list_physical_devices('GPU')
# if gpus:
# try:
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
# logical_gpus = tf.config.experimental.list_logical_devices('GPU')
# print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
# except RuntimeError as e:
# pass
# config = tf.ConfigProto()
# config.gpu_options.allow_growth(True)
# session = tf.Session(config=config)
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
os.path.join(split_dir, "train"),
target_size=input_shape[0:2],
batch_size=20,
class_mode='binary')
val_generator = val_datagen.flow_from_directory(
os.path.join(split_dir, "val"),
target_size=input_shape[:2],
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(
os.path.join(split_dir, "test"),
target_size=input_shape[:2],
batch_size=20,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=50,
epochs=10,
validation_data=val_generator,
validation_steps=50)
model.save('sample.h5')
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()