-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
207 lines (163 loc) · 6.77 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import argparse
import time
import sys
import os
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from model import ActorCritic
from environment import make_env, make_env_pool
learning_rate = 1e-4 # learning rate
gamma = 0.99 # discount rate
gae_lambda = 0.95 # used in GAE evaluation
ppo_eps = 0.2 # clip ratio
critic_discount = 0.5 # critic loss coefficient
entropy_beta = 0.0 # 1e-3 # entropy loss coefficient
# ppo_steps = int(2048 / 4)
mini_batch_size = 64
ppo_epochs = 10
test_epochs = 10
log_epochs = 100
num_tests = 2
target_reward = -10
def normalize(x):
x -= x.mean()
x /= (x.std() + 1e-8)
return x
def test_env(env, model):
state = env.reset()
total_reward = 0
with torch.no_grad():
model.eval()
for i in range(ppo_steps):
state = torch.FloatTensor(state).to(device)
dist, _ = model(state)
action = dist.sample().cpu().numpy()
next_state, reward, _ = env.step(action)
state = next_state
total_reward += reward
return total_reward
def compute_gae(next_value, rewards, masks, values, gamma=gamma, lam=gae_lambda):
values = values + [next_value]
gae = 0
returns = []
for step in reversed(range(len(rewards))):
delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step]
gae = delta + gamma * lam * masks[step] * gae
returns.insert(0, gae + values[step])
return returns
def ppo_iter(states, actions, log_probs, returns, advantages):
batch_size = states.size(0)
for _ in range(batch_size // mini_batch_size):
rand_ids = np.random.randint(0, batch_size, mini_batch_size)
yield states[rand_ids, :], actions[rand_ids, :], log_probs[rand_ids, :], returns[rand_ids, :], advantages[rand_ids, :]
def ppo_update(frame_idx, states, actions, log_probs, returns, advantages, clip_param=ppo_eps):
for _ in range(ppo_epochs):
for state, action, old_log_probs, return_, advantage in ppo_iter(states, actions, log_probs, returns, advantages):
dist, value = model(state)
entropy = dist.entropy().mean()
new_log_probs = dist.log_prob(action)
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) * advantage
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = (return_ - value).pow(2).mean()
loss = critic_discount * critic_loss + actor_loss - entropy_beta * entropy
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dt", required=True, help="Simulation time step")
parser.add_argument("-e", "--env", default="basic", help="Environment name to use")
parser.add_argument("-p", "--path", default="./checkpoints", help="Path to save model")
parser.add_argument("-m", "--model", default=None, help="Model to load")
parser.add_argument("--pool", dest="pool", action="store_true", help="Use environment pool")
parser.add_argument("--no-pool", dest="pool", action="store_false", help="Do not use environment pool")
parser.set_defaults(pool=True)
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
dt = float(args.dt)
ppo_steps = int(2048 / (dt * 10))
env = make_env(args.env, dt)
env_pool = make_env_pool(dt)
test = make_env(args.env, dt)
num_inputs = env.num_observation
num_outputs = env.num_action
model = ActorCritic(num_inputs, num_outputs).to(device)
if args.model is not None:
model.load_state_dict(torch.load(args.model, map_location=device))
print(model)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
frame_idx = 0
train_epoch = 0
best_reward = None
iter = 10000
# state = env.reset()
start = time.time()
for i in range(iter):
# if args.pool and train_epoch % 10 == 0:
# env = random.choice(env_pool)
# print('current environment:', env.name)
state = env.reset()
model.train()
log_probs = []
values = []
states = []
actions = []
rewards = []
masks = []
start = time.perf_counter()
for _ in range(ppo_steps):
state = torch.FloatTensor(state).to(device)
dist, value = model(state)
action = dist.sample()
next_state, reward, done = env.step(action.cpu().numpy())
log_prob = dist.log_prob(action)
log_probs.append(log_prob)
values.append(value)
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
states.append(state)
actions.append(action)
state = next_state
frame_idx += 1
# print('last state:\n', state)
print('last reward:\n', reward)
print('step elapsed:', time.perf_counter() - start)
next_state = torch.FloatTensor(next_state).to(device)
_, next_value = model(next_state)
returns = compute_gae(next_value, rewards, masks, values)
returns = torch.cat(returns).detach()
log_probs = torch.cat(log_probs).detach()
values = torch.cat(values).detach()
states = torch.cat(states)
actions = torch.cat(actions)
advantages = returns - values
advantages = normalize(advantages)
print('update...')
start = time.perf_counter()
ppo_update(frame_idx, states, actions, log_probs, returns, advantages)
print(f'update finished, elasped: {time.perf_counter() - start:.5f}')
train_epoch += 1
if train_epoch % test_epochs == 0:
test_reward = 0
if args.pool:
for env_ in env_pool:
test_reward += np.mean([test_env(env_, model) for _ in range(num_tests)])
else:
test_reward = np.mean([test_env(test, model) for _ in range(num_tests)])
print(f'Iteration {i}. avg reward: {test_reward}')
print(f'elapsed time: {time.time() - start:.2f}')
name = f'itr-{i},dt-{dt},reward-{test_reward:.3f}.dat'
fname = os.path.join(args.path, name)
if best_reward == None or best_reward < test_reward:
best_reward = test_reward
torch.save(model.state_dict(), fname)
if train_epoch % log_epochs == 0:
torch.save(model.state_dict(), fname)