-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDataLoader.py
142 lines (121 loc) · 5.81 KB
/
DataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: UTF-8 -*-
'''
Image dataset loader
'''
from torchvision import transforms, datasets
import os
import torch
from PIL import Image
import scipy.io as scio
def Cifar10DataLoader(args):
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
])
}
image_datasets = {}
image_datasets['train'] = datasets.CIFAR10(root=args.data_dir, train=True, download=True, transform=data_transforms['train'])
image_datasets['val'] = datasets.CIFAR10(root=args.data_dir, train=False, download=True, transform=data_transforms['val'])
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size, shuffle=True if x == 'train' else False,
num_workers=args.num_workers, pin_memory=True) for x in ['train', 'val']}
return dataloders
def Cifar100DataLoader(args):
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))
])
}
image_datasets = {}
image_datasets['train'] = datasets.CIFAR100(root=args.data_dir, train=True, download=True, transform=data_transforms['train'])
image_datasets['val'] = datasets.CIFAR100(root=args.data_dir, train=False, download=True, transform=data_transforms['val'])
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size, shuffle=True if x == 'train' else False,
num_workers=args.num_workers, pin_memory=True) for x in ['train', 'val']}
return dataloders
def ImageNetDataLoader(args):
# data transform
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {}
image_datasets['train'] = datasets.ImageFolder(root=os.path.join(args.data_dir, 'ILSVRC2012_img_train'), transform=data_transforms['train'])
image_datasets['val'] = datasets.ImageFolder(root=os.path.join(args.data_dir, 'ILSVRC2012_img_val'), transform=data_transforms['val'])
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size, shuffle=True if x == 'train' else False,
num_workers=args.num_workers, pin_memory=True) for x in ['train', 'val']}
return dataloders
def TinyImageNetDataLoader(args):
# data transform
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(56),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.CenterCrop(56),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {}
image_datasets['train'] = datasets.ImageFolder(root=os.path.join(args.data_dir, 'train'), transform=data_transforms['train'])
image_datasets['val'] = datasets.ImageFolder(root=os.path.join(args.data_dir, 'val'), transform=data_transforms['val'])
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size, shuffle=True if x == 'train' else False,
num_workers=args.num_workers, pin_memory=True) for x in ['train', 'val']}
return dataloders
def SVHNDataLoader(args):
from SVHN import SVHN
data_transforms = {
'train': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4309, 0.4302, 0.4463), (0.1965, 0.1983, 0.1994))
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4524, 0.4525, 0.4690), (0.2194, 0.2266, 0.2285))
])
}
image_datasets = {}
image_datasets['train'] = SVHN(root=os.path.join(args.data_dir, 'SVHN'), split='train', download=False, transform=data_transforms['train'])
image_datasets['val'] = SVHN(root=os.path.join(args.data_dir, 'SVHN'), split='test', download=False, transform=data_transforms['val'])
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size, shuffle=True if x == 'train' else False,
num_workers=args.num_workers, pin_memory=True) for x in ['train', 'val']}
return dataloders
def dataloaders(args):
dataset = args.dataset.lower()
assert dataset in ['imagenet', 'tinyimagenet', 'cifar10', 'cifar100', 'svhn']
if dataset == 'imagenet':
return ImageNetDataLoader(args)
elif dataset == 'tinyimagenet':
return TinyImageNetDataLoader(args)
elif dataset == 'cifar10':
return Cifar10DataLoader(args)
elif dataset == 'cifar100':
return Cifar100DataLoader(args)
elif dataset == 'svhn':
return SVHNDataLoader(args)