-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscore.py
34 lines (28 loc) · 1.01 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import keras
import numpy as np
from keras import losses
from keras import metrics
from keras import optimizers
from azureml.core.model import Model
from keras.models import load_model
def vectorize_sequences(sequences, dimension=10000):
# Create an all-zero matrix of shape (len(sequences), dimension)
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1. # set specific indices of results[i] to 1s
return results
#Load the model
def init():
global model
# retreive the path to the model file using the model name
model_path = Model.get_model_path('BestModel.h5')
model = load_model(model_path)
model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss=losses.binary_crossentropy,
metrics=[metrics.binary_accuracy])
#Score
def run(test_data_np):
import json
x_test = vectorize_sequences(test_data_np)
pred = model.predict(x_test)
return json.dumps(str(pred))