-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert.py
99 lines (80 loc) · 3.08 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# coding: utf-8
import tensorflow as tf
import numpy as np
import scipy.misc
import os
import glob
def _bytes_features(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def _int64_features(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _float_features(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def convert(source_dir, target_dir, out_size, exts=[''], num_shards=128, tfrecords_prefix=''):
if not tf.gfile.Exists(source_dir):
raise Exception('source dir {} does not exists'.format(source_dir))
if tfrecords_prefix and not tfrecords_prefix.endswith('-'):
tfrecords_prefix += '-'
if tf.gfile.Exists(target_dir):
tf.gfile.DeleteRecursively(target_dir)
tf.gfile.MakeDirs(target_dir)
# get meta-data
path_list = []
for ext in exts:
pattern = '*.' + ext if ext != '' else '*'
path = os.path.join(source_dir, pattern)
path_list.extend(glob.glob(path))
# shuffle path_list
np.random.shuffle(path_list)
num_files = len(path_list)
num_per_shard = num_files // num_shards # Last shard will have more files
print('# of files: {}'.format(num_files))
print('# of shards: {}'.format(num_shards))
print('# files per shards: {}'.format(num_per_shard))
# convert to tfrecords
shard_idx = 0
writer = None
for i, path in enumerate(path_list):
if i % num_per_shard == 0 and shard_idx < num_shards:
shard_idx += 1
tfrecord_fn = '{}{:0>4d}-of-{:0>4d}.tfrecord'.format(tfrecords_prefix, shard_idx, num_shards)
tfrecord_path = os.path.join(target_dir, tfrecord_fn)
print("Writing {} ...".format(tfrecord_path))
if shard_idx > 1:
writer.close()
writer = tf.python_io.TFRecordWriter(tfrecord_path)
im = scipy.misc.imread(path, mode='RGB')
im = scipy.misc.imresize(im, out_size)
label = int(str(path).split('/')[-1].split('_')[0])
if 0 <= label <= 5:
age = 0
elif 6 <= label <= 10:
age = 1
elif 11 <= label <= 15:
age = 2
elif 16 <= label <= 20:
age = 3
elif 21 <= label <= 30:
age = 4
elif 31 <= label <= 40:
age = 5
elif 41 <= label <= 50:
age = 6
elif 51 <= label <= 60:
age = 7
elif 61 <= label <= 70:
age = 8
else:
age = 9
gender = int(str(path).split('/')[-1].split('_')[1])
example = tf.train.Example(features=tf.train.Features(feature={
# "shape": _int64_features(im.shape),
"image": _bytes_features([im.tobytes()]),
"age": _int64_features([age]),
"gender": _int64_features([gender]),
}))
writer.write(example.SerializeToString())
writer.close()
if __name__ == "__main__":
convert('./data/UTKFace', './data/UTKFace_16_tfrecords', out_size=[128, 128],
exts=['jpg'], num_shards=16, tfrecords_prefix='UTKFace')