forked from karpathy/micrograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorchexample.py
140 lines (114 loc) · 3.44 KB
/
torchexample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X_Gl, y_Gl in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X_Gl.shape}")
print(f"Shape of y: {y_Gl.shape} {y_Gl.dtype}")
break
# Get cpu, gpu or mps device for training.
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
MODEL = NeuralNetwork().to(device)
print(MODEL)
LOSS_FN = nn.CrossEntropyLoss()
OPTIMIZER = torch.optim.SGD(MODEL.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
EPOCHS = 5 # 5
for t in range(EPOCHS):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_dataloader, MODEL, LOSS_FN, OPTIMIZER)
test(test_dataloader, MODEL, LOSS_FN)
print("Done!")
torch.save(MODEL.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
MODEL_2 = NeuralNetwork().to(device)
MODEL_2.load_state_dict(torch.load("model.pth", weights_only=True))
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
MODEL.eval()
x, y_ = test_data[0][0], test_data[0][1]
with torch.no_grad():
x = x.to(device)
pred = MODEL(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y_]
print(f'Predicted: "{predicted}", Actual: "{actual}"')