-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
126 lines (93 loc) · 4.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import time
from progress.bar import Bar
import matplotlib.pyplot as plt
import tensorflow as tf
from gan import MNIST_GAN
''' Load and Preporcess Data '''
# Load dataset
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
# Reshape data and encode data
train_images = train_images.reshape(
train_images.shape[0], 28, 28, 1).astype('float32')
# Normalize data to -1, 1
train_images = (train_images - 127.5) / 127.5
BUFFER_SIZE = len(train_images)
BATCH_SIZE = 256
# Batch and Shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(
train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
''' Create Models '''
mnist_gan = MNIST_GAN(100)
''' Check Generator and Descriminator are working '''
# # Test gen working
# noise = tf.random.normal([1, 100])
# generated_image = mnist_gan.generator(noise, training=False)
# plt.imshow(generated_image[0, :, :, 0], cmap='gray')
# plt.show()
# # Test desc working
# decision = mnist_gan.discriminator(generated_image)
# print(decision)
''' Create Save Checkpoints '''
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "checkpoint")
checkpoint = tf.train.Checkpoint(generator_optimizer=mnist_gan.generator_optimizer,
discriminator_optimizer=mnist_gan.discriminator_optimizer,
generator=mnist_gan.generator,
discriminator=mnist_gan.discriminator)
# Load models from last checkpoint
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
num_prev_epochs = len([name for name in os.listdir('training_images')])
''' Define Training Loop '''
EPOCHS = 100
noise_dim = 100
num_examples_to_generate = 16
training_image_inputs = tf.random.normal(
[num_examples_to_generate, noise_dim], seed=0)
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = mnist_gan.generator(noise, training=True)
real_output = mnist_gan.discriminator(images, training=True)
fake_output = mnist_gan.discriminator(generated_images, training=True)
generator_loss = mnist_gan.generator_loss(fake_output)
descriminator_loss = mnist_gan.discriminator_loss(
real_output, fake_output)
gradients_of_generator = gen_tape.gradient(
generator_loss, mnist_gan.generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(
descriminator_loss, mnist_gan.discriminator.trainable_variables)
mnist_gan.generator_optimizer.apply_gradients(
zip(gradients_of_generator, mnist_gan.generator.trainable_variables))
mnist_gan.discriminator_optimizer.apply_gradients(
zip(gradients_of_discriminator, mnist_gan.discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(num_prev_epochs, epochs):
start_time = time.time()
num_batches = int(BUFFER_SIZE / BATCH_SIZE)
with Bar('Epoch {}'.format(epoch), max=num_batches) as bar:
for image_batch in dataset:
train_step(image_batch)
bar.next()
# Produce images for training GIF
generate_and_save_images(
mnist_gan.generator, epoch + 1, training_image_inputs)
# Save the model every N epochs
if (epoch + 1) % 1 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
print('Time for epoch {} is {} sec'.format(
epoch + 1, time.time()-start_time))
# Generate after the final epoch
generate_and_save_images(
mnist_gan.generator, epochs, training_image_inputs)
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('training_images/image_at_epoch_{:04d}.png'.format(epoch))
# TODO make main
train(train_dataset, EPOCHS)