-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_entity_recognition.py
267 lines (208 loc) · 9.97 KB
/
run_entity_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import json
import platform
import argparse
from glob import glob
from seqeval import metrics
from transformers import AdamW, get_linear_schedule_with_warmup
import torch
from torch.nn import CrossEntropyLoss
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from dataset import EntityRecognitionDataModule
from util import ENTITY_MODEL_CLASSES, get_entity_model
class EntityRecognizer(LightningModule):
def __init__(
self,
data_name: str,
model_type: str,
model_name: str,
entity_map: dict,
learning_rate: float = 5e-5
):
"""
`EntityRecognizer` run entity recognition.
Args:
data_name (str): dataset name.
model_type (str): model type, e.g., `bert`
model_name (str): model name, e.g., `bert-base-cased`
num_entities (int): number of entities.
learning_rate (float, optional): learning rate for optimizer. defaults to 5e-5.
"""
super().__init__()
self.save_hyperparameters()
# save entity_map
self.entity_map = entity_map
num_entities = len(entity_map)
# load model
model = get_entity_model(model_type, model_name, num_entities)
self.model = model
def forward(self, x):
return self.model(**x)
def training_step(self, batch, batch_idx):
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3]
}
if self.hparams.model_type in ["distilbert", "roberta"]:
del inputs["token_type_ids"] # Distilbert don't use segment_ids.
outputs = self(inputs)
loss = outputs[0]
result = {"loss": loss}
return result
def validation_step(self, batch, batch_idx):
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3]
}
if self.hparams.model_type in ["distilbert", "roberta"]:
del inputs["token_type_ids"] # Distilbert don't use segment_ids.
outputs = self(inputs)
loss, logits = outputs[:2]
preds = torch.argmax(logits, dim=2)
result = {"val_loss": loss, "preds": preds, "labels": batch[3]}
return result
def validation_epoch_end(self, outputs):
val_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
preds = torch.cat([x["preds"] for x in outputs]).detach().cpu().numpy()
labels = torch.cat([x["labels"] for x in outputs]).detach().cpu().numpy()
out_label_list = [[] for _ in range(labels.shape[0])]
preds_list = [[] for _ in range(preds.shape[0])]
pad_token_label_id = CrossEntropyLoss().ignore_index
label_map = {i: label for label, i in self.entity_map.items()}
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
if labels[i, j] != pad_token_label_id:
out_label_list[i].append(label_map[labels[i][j]])
preds_list[i].append(label_map[preds[i][j]])
val_f1 = metrics.f1_score(out_label_list, preds_list)
self.log("val_loss", val_loss, prog_bar=True)
self.log("val_f1", val_f1, prog_bar=True)
return {"val_loss": val_loss, "val_f1": val_f1}
def test_step(self, batch, batch_idx):
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3]
}
if self.hparams.model_type in ["distilbert", "roberta"]:
del inputs["token_type_ids"] # Distilbert don't use segment_ids.
outputs = self(inputs)
_, logits = outputs[:2]
preds = torch.argmax(logits, dim=2)
result = {"preds": preds, "labels": batch[3]}
return result
def test_epoch_end(self, outputs):
preds = torch.cat([x["preds"] for x in outputs]).detach().cpu().numpy()
labels = torch.cat([x["labels"] for x in outputs]).detach().cpu().numpy()
out_label_list = [[] for _ in range(labels.shape[0])]
preds_list = [[] for _ in range(preds.shape[0])]
pad_token_label_id = CrossEntropyLoss().ignore_index
label_map = {i: label for label, i in self.entity_map.items()}
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
if labels[i, j] != pad_token_label_id:
out_label_list[i].append(label_map[labels[i][j]])
preds_list[i].append(label_map[preds[i][j]])
test_precision = metrics.precision_score(out_label_list, preds_list)
test_recall = metrics.recall_score(out_label_list, preds_list)
test_f1 = metrics.f1_score(out_label_list, preds_list)
results = {"precision": test_precision, "recall": test_recall, "f1": test_f1}
result_file = os.path.join(self.trainer.checkpoint_callback.dirpath, "result.json")
with open(result_file, "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=4)
print("Result file is dumped at ", result_file)
print(json.dumps(results, indent=4))
return results
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.0},
{'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=1e-8)
t_total = len(self.train_dataloader()) * self.trainer.max_epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=t_total)
return [optimizer], [scheduler]
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--learning_rate', type=float, default=5e-5)
return parser
def main():
# Argument Setting -------------------------------------------------------------------------------------------------
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--model_type", type=str, required=True,
help="Model type selected in the list: " + ", ".join(ENTITY_MODEL_CLASSES.keys()))
parser.add_argument("--model_name", type=str, required=True,
help="Model name of pre-trained model. you can search at huggingface models.")
parser.add_argument("--data_name", type=str, required=True,
help="Data name selected in the list: " + ", ".join(
EntityRecognitionDataModule.get_supported_dataset()))
# Other parameters
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--num_train_epochs", default=10, type=int, help="Epochs at train time.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size")
parser.add_argument("--gpu_id", type=str, default="0",
help="Gpu device id.")
parser.add_argument("--seed", default=42, type=int, help="Seed number")
parser = Trainer.add_argparse_args(parser)
parser = EntityRecognizer.add_model_specific_args(parser)
args = parser.parse_args()
# ------------------------------------------------------------------------------------------------------------------
# set seed
seed_everything(args.seed)
# load DataModule
args.model_type = args.model_type.lower()
args.model_name = args.model_name.lower()
args.data_name = args.data_name.lower()
dm = EntityRecognitionDataModule(args.data_name, args.model_type, args.model_name,
args.max_seq_length, args.batch_size)
dm.prepare_data()
entity_map = dm.entity_vocab
# load Callbacks and Loggers
model_dir = './model/{}/{}/{}'.format(args.data_name, "entity", args.model_name.replace("/", "-"))
model_checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
mode='min',
dirpath=model_dir,
filename='{epoch:02d}-{val_f1:.3f}'
)
tensorboard_logger = TensorBoardLogger(
save_dir=model_dir, name='' # <-- if experiment name(=name) is empty, sub directory is not made.
)
# load Trainer
trainer = Trainer(
gpus=args.gpu_id if platform.system() != 'Windows' else 1, # <-- for dev. pc
logger=tensorboard_logger,
callbacks=[model_checkpoint_callback],
max_epochs=args.num_train_epochs
)
# Do train !
if args.do_train:
model = EntityRecognizer(args.data_name, args.model_type, args.model_name, entity_map)
dm.setup('fit')
trainer.fit(model, dm)
# Do eval !
if args.do_eval:
model_files = glob(os.path.join(trainer.checkpoint_callback.dirpath, "*.ckpt"))
best_fn = sorted(model_files, key=lambda fn: fn.split("=")[-1])[0]
print("[Evaluation] Best Model File name is {}".format(best_fn))
model = EntityRecognizer.load_from_checkpoint(best_fn)
dm.setup('test')
trainer.test(model, datamodule=dm)
if __name__ == '__main__':
main()