-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_memory_for_LLM.py
46 lines (34 loc) · 1.54 KB
/
create_memory_for_LLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
## Uncomment the following files if you're not using pipenv as your virtual environment manager
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
# Step 1: Load raw PDF(s)
DATA_PATH="data/"
def load_pdf_files(data):
loader = DirectoryLoader(data,
glob='*.pdf',
loader_cls=PyPDFLoader)
documents=loader.load()
return documents
documents=load_pdf_files(data=DATA_PATH)
#print("Length of PDF pages: ", len(documents))
# Step 2: Create Chunks
def create_chunks(extracted_data):
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500,
chunk_overlap=50)
text_chunks=text_splitter.split_documents(extracted_data)
return text_chunks
text_chunks=create_chunks(extracted_data=documents)
#print("Length of Text Chunks: ", len(text_chunks))
# Step 3: Create Vector Embeddings
def get_embedding_model():
embedding_model=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return embedding_model
embedding_model=get_embedding_model()
# Step 4: Store embeddings in FAISS
DB_FAISS_PATH="vectorstore/db_faiss"
db=FAISS.from_documents(text_chunks, embedding_model)
db.save_local(DB_FAISS_PATH)