-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestlearn.py
132 lines (95 loc) · 3.61 KB
/
testlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# This project is from the Tech With Tim YouTube channel
import json
import pickle
import random
import nltk
import numpy
import tensorflow
import tflearn
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
with open("super_intents.json") as file:
data = json.load(file)
'''
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:'''
words = [] # The actual words will be stored here
labels = [] # The unique tag names will bes stored here
docs_x = [] # The list of words/strings for each pattern will be stored here
docs_y = [] # The tag names will be stored here but used for training purpose, the names needn't be unique
for intent in data["intents"]:
for pattern in intent["intent"]:
wrds = nltk.word_tokenize(pattern) # This basically makes a list of each word in the pattern
words.extend(wrds) # We add all the words from all patterns in the entire intents file to words
docs_x.append(wrds)
docs_y.append(intent["intent"])
if intent["intent"] not in labels:
labels.append(intent["intent"]) # This ensures uniqueness of the elements
words = [stemmer.stem(w.lower()) for w in words if
w != '?'] # This removes the morphological affixes leaving the stem
words = sorted(list(set(words))) # This step deletes duplicate words in words and sorts them in alphabetical order
labels = sorted(labels) # Sorts labels in alphabetical order
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
'''The enumerate () method adds a counter to an iterable and returns it in the form of an enumerating object.
This enumerated object can then be used directly for loops or converted into a list of tuples using the list()
function. (geeksforgeeks)'''
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
'''with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)'''
tensorflow.compat.v1.reset_default_graph()
unit = len(training[0])//5
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, unit)
net = tflearn.fully_connected(net, unit//5)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
'''
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
'''
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
pbag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
pbag[i] = 1
return numpy.array(pbag)
def chat():
print("talk (type quit to stop)")
while True:
inp = input("you: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg["intent"] == tag:
responses = tg["responses"]
print(random.choice(responses))
chat()