-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_synapse.py
116 lines (99 loc) · 5.08 KB
/
train_synapse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import logging
import os
import random
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
from lib.networks import PVT_GCASCADE, MERIT_GCASCADE
from trainer import trainer_synapse
from torchsummaryX import summary
from ptflops import get_model_complexity_info
parser = argparse.ArgumentParser()
parser.add_argument('--encoder', type=str,
default='PVT', help='Name of encoder: PVT or MERIT')
parser.add_argument('--skip_aggregation', type=str,
default='additive', help='Type of skip-aggregation: additive or concatenation')
parser.add_argument('--root_path', type=str,
default='./data/synapse/train_npz', help='root dir for data')
parser.add_argument('--volume_path', type=str,
default='./data/synapse/test_vol_h5', help='root dir for validation volume data')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=300, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=6, help='batch_size per gpu') #6
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.0001,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input') #256
parser.add_argument('--seed', type=int,
default=2222, help='random seed')
args = parser.parse_args()
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
dataset_name = args.dataset
dataset_config = {
'Synapse': {
'root_path': args.root_path,
'volume_path': args.volume_path,
'list_dir': args.list_dir,
'num_classes': args.num_classes,
'z_spacing': 1,
},
}
args.num_classes = dataset_config[dataset_name]['num_classes']
args.root_path = dataset_config[dataset_name]['root_path']
args.volume_path = dataset_config[dataset_name]['volume_path']
args.z_spacing = dataset_config[dataset_name]['z_spacing']
args.list_dir = dataset_config[dataset_name]['list_dir']
args.is_pretrain = True
args.exp = 'PVT_GCASCADE_MUTATION_w3_7_Run1_' + dataset_name + str(args.img_size)
snapshot_path = "model_pth/{}/{}".format(args.exp, 'PVT_GCASCADE_MUTATION_w3_7_Run1')
snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path
snapshot_path = snapshot_path+'_'+str(args.max_iterations)[0:2]+'k' if args.max_iterations != 30000 else snapshot_path
snapshot_path = snapshot_path + '_epo' +str(args.max_epochs) if args.max_epochs != 30 else snapshot_path
snapshot_path = snapshot_path+'_bs'+str(args.batch_size)
snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path
snapshot_path = snapshot_path + '_'+str(args.img_size)
snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path
#current_time = time.strftime("%H%M%S")
#print("The current time is", current_time)
#snapshot_path = snapshot_path +'_t'+current_time
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
if args.encoder=='PVT':
net = PVT_GCASCADE(n_class=args.num_classes, img_size=args.img_size, k=11, padding=5, conv='mr', gcb_act='gelu', skip_aggregation=args.skip_aggregation)
elif args.encoder=='MERIT':
net = MERIT_GCASCADE(n_class=args.num_classes, img_size_s1=(args.img_size,args.img_size), img_size_s2=(224,224), k=11, padding=5, conv='mr', gcb_act='gelu', skip_aggregation=args.skip_aggregation)
else:
print('Implementation not found for this encoder. Exiting!')
sys.exit()
print('Model %s created' % (args.encoder+'-GCASCADE: '))
net = net.cuda()
macs, params = get_model_complexity_info(net, (3, args.img_size, args.img_size), as_strings=True,
print_per_layer_stat=True, verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
trainer = {'Synapse': trainer_synapse,}
trainer[dataset_name](args, net, snapshot_path)