-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaldera_mcts.py
149 lines (125 loc) · 5.9 KB
/
caldera_mcts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from mcts import mcts
from bayes_opt.bayesian_optimization import *
from copy import deepcopy
from sklearn.gaussian_process.kernels import RBF
from sklearn.gaussian_process import GaussianProcessRegressor
# import matplotlib
# import matplotlib.mlab as mlab
# import warnings
#
#
# def caldera_sim_function(x, y):
# warnings.filterwarnings("ignore", category=matplotlib.cbook.MatplotlibDeprecationWarning)
# x, y = x / 10.0, y / 10.0
# z0 = mlab.bivariate_normal(x, y, 10.0, 5.0, 5.0, 0.0)
# z1 = mlab.bivariate_normal(x, y, 1.0, 2.0, 2.0, 5.0)
# z2 = mlab.bivariate_normal(x, y, 1.7, 1.7, 8.0, 8.0)
# return 50000.0 * z0 + 2500.0 * z1 + 5000.0 * z2
class RobotState:
def __init__(self, x, y, bounds, samples, acq_func, max_tree_depth, step_size,
current_direction=None, kernel=RBF(length_scale=1)):
# Creates a new state that represents the root of an action tree
self.x = x
self.y = y
self.bounds = bounds
self.samples = deepcopy(samples)
self.acq_func = acq_func
self.max_tree_depth = max_tree_depth
self.step_size = step_size
self.tree_depth = 0
self.base_reward = 0
self.current_direction = current_direction
self.action_history = list()
self.available_actions = None
self.y_max = 1
self.gp = GaussianProcessRegressor(kernel=kernel, alpha=1e-3, normalize_y=False, n_restarts_optimizer=25,
random_state=1)
if len(samples) > 0:
xdata = np.vstack(list(self.samples.keys()))
ydata = np.vstack(list(self.samples.values()))
self.y_max = np.max(ydata)
self.gp.fit(xdata, ydata.reshape(-1) / (self.y_max if self.y_max > 0 else 1))
def set_backtracking(self, val):
self.can_backtrack = val
@staticmethod
def _invert_dir(dir):
return {None: None, 'north': 'south', 'south': 'north',
'west': 'east', 'east': 'west'}[dir]
def renew(self, new_samples):
# Returns a new robot state that has new_samples instead of the existing samples
# This resets internal variables so that the returned state is the root of a tree
return RobotState(self.x, self.y, self.bounds, new_samples, self.acq_func, max_tree_depth=self.max_tree_depth,
step_size=self.step_size, current_direction=self.current_direction, kernel=self.gp.kernel)
def _generate_actions(self, prevent_backtracking=True, direct_paths_only=False):
actions = []
if self.x >= (self.bounds['x'][0] + self.step_size):
actions.append('west')
if self.x <= (self.bounds['x'][1] - self.step_size):
actions.append('east')
if self.y >= (self.bounds['y'][0] + self.step_size):
actions.append('south')
if self.y <= (self.bounds['y'][1] - self.step_size):
actions.append('north')
if prevent_backtracking:
# Prevent the robot from moving backwards
if self._invert_dir(self.current_direction) in actions:
actions.remove(self._invert_dir(self.current_direction))
if direct_paths_only:
for action in self.action_history:
if len(actions) > 1 and self._invert_dir(action) in actions:
actions.remove(self._invert_dir(action))
self.available_actions = actions
def getPossibleActions(self):
if self.available_actions is None:
self._generate_actions()
return self.available_actions[:]
def takeAction(self, action):
new_x, new_y = self.x, self.y
if action == 'west':
new_x -= self.step_size
if action == 'east':
new_x += self.step_size
if action == 'north':
new_y += self.step_size
if action == 'south':
new_y -= self.step_size
# Add the predicted sample to the set of samples
new_samples = deepcopy(self.samples)
new_samples[(new_x, new_y)] = self.gp.predict(np.array([new_x, new_y]).reshape(1, -1))
# Create a new state representing the child
new_state = RobotState(new_x, new_y, self.bounds, new_samples, self.acq_func, self.max_tree_depth,
self.step_size, current_direction=action, kernel=self.gp.kernel) # initially a root note
new_state.tree_depth = self.tree_depth + 1 # Set depth in tree (no longer a root node)
new_state.base_reward = self.getReward() # Add accumulated reward
new_state.action_history = self.action_history.copy() # Pass on action history
new_state.action_history.append(action)
return new_state
def isTerminal(self):
global max_tree_depth
assert (self.tree_depth == len(self.action_history))
return self.tree_depth >= self.max_tree_depth
def getReward(self):
reward, = self.acq_func.utility(np.array([self.x, self.y]).reshape(1, -1),
self.gp, y_max=1)
return self.base_reward + reward * self.y_max
def mcts_state_update(mcts, state, samples, sample_func):
mcts.search(initialState=state)
state = mcts.getBestChild(mcts.root, 0).state # bestOnly = True
if (state.x, state.y) not in samples:
samples[(state.x, state.y)] = sample_func(state.x, state.y)
new_robot_state = state.renew(samples)
return new_robot_state
if __name__ == "__main__":
bounds = {'x': (0, 100), 'y': (0, 100)}
start = [80, 50]
kappa = 2.576
max_tree_depth = 7
num_actions = 150
step_size = 4
ucb = UtilityFunction('ucb', kappa=kappa, xi=0)
acq_func = ucb
mcts = mcts(iterationLimit=16 * (max_tree_depth ** 2))
samples = dict()
robot_state = RobotState(*start, bounds, samples, acq_func, max_tree_depth=max_tree_depth)
for _ in range(num_actions):
mcts_state_update(mcts, robot_state, samples, sample_func=caldera_sim_function)