-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
105 lines (89 loc) · 3.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
"""
validation
"""
import torch
import numpy as np
import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from sklearn.metrics import auc, confusion_matrix
import torch.utils.data
import argparse
from dataset import visDataset_target
def val_source(net, test_loader):
net.eval()
correct = 0
total = 0
gt_list = []
p_list = []
for i, (inputs, labels, _) in enumerate(test_loader):
inputs = inputs.cuda()
labels = labels.cuda()
gt_list.append(labels.cpu().numpy())
with torch.no_grad():
outputs, _ = net(inputs)
# 取得分最高的那个类 (outputs.data的索引号)
output_prob = F.softmax(outputs, dim=1).data
p_list.append(output_prob[:, 1].detach().cpu().numpy())
_, predicted = torch.max(outputs, 1)
total += inputs.size(0)
num = (predicted == labels).sum()
correct = correct + num
acc = 100. * correct.item() / total
prob_list = np.concatenate(p_list)
gt_list = np.concatenate(gt_list)
return acc
def val_pclass(net, test_loader):
net.eval()
start_test = True
with torch.no_grad():
iter_test = iter(test_loader)
for i in range(len(test_loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
outputs, _ = net(inputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
acc = matrix.diagonal() / matrix.sum(axis=1) * 100
aacc = acc.mean()
aa = [str(np.round(i, 2)) for i in acc]
acc = ' '.join(aa)
return aacc, acc
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='2', help='gpu device_ids for cuda')
parser.add_argument('--batchsize', default=64, type=int)
parser.add_argument('--test_path', default='/mnt/cephfs/home/qiuzhen/244/code/OCT_DAL/model_ada/model_visda/20201219-1254max_acca2w-our_best.pkl', type=str,
help='path to the pre-trained source model')
parser.add_argument('--data_path', default='/mnt/cephfs/home/linhongbin/UDA/dataset/VISDA-C/validation', type=str,
help='path to target data')
parser.add_argument('--label_file', default='./data/visda_real_train.pkl', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = arg_parser()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
net = torch.load(args.test_path).cuda()
net = net.module
transform_test = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # grayscale mean/std
])
val_dataset = visDataset_target(args.data_path, args.label_file, train=False, transform=transform_test)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batchsize, shuffle=False,
num_workers=2)
acc = val_pclass(net, val_loader)
print(acc)