-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0101-growth-loop.R
56 lines (43 loc) · 1.58 KB
/
0101-growth-loop.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#' ---
#' title: "Simple growth difference equation model"
#' author: "Richard Reeve"
#' date: '`r format(Sys.Date(), "%B %d %Y")`'
#' output: html_document
#' ---
#'
#' Set up the simulation parameters
#' --------------------------------
#' First we set up the parameters for the simulation.
# Set the growth rate
growth.rate <- 0.015
# Starting population size
initial.count <- 7000000000
# And setting times
start.time <- 0
end.time <- 100
#' Run the simplest possible simulation
#' ------------------------------------
#' Then we run it so that we can get the output we need.
# Set up the population starting size (at the first timestep)
population.vector <- c(initial.count)
# the timesteps that the simulation will run through
timesteps <- seq(from = start.time + 1, to = end.time)
# Now we loop through the time itself (starting at the second timestep)
for (new.time in timesteps) {
# First extract the current population size
current.population <- tail(population.vector, 1)
# Calculate changes to population
new.additions <- growth.rate * current.population
# Calculate population at next timestep
next.population <- current.population + new.additions
# Add new element onto end of population vector
population.vector <- append(population.vector, next.population)
}
#' Plot the results
#' ----------------
#' And finally we output the results.
plot(append(start.time, timesteps), population.vector, type = "l")
abline(h = initial.count * 2, lty = 2, col = 2)
abline(v = 46.6, lty = 2, col = 2)
abline(h = initial.count * 4, lty = 2, col = 3)
abline(v = 46.6 * 2, lty = 2, col = 3)